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Abstract

We consider the problem of maintaining an approximate maximum integral matching in a dynamic

graph G, while the adversary makes changes to the edges of the graph. The goal is to maintain a

(1 + ε)-approximate maximum matching for constant ε > 0, while minimizing the update time. In

the fully dynamic setting, where both edge insertion and deletions are allowed, Gupta and Peng (see

[GP13]) gave an algorithm for this problem with an update time of O(
√
m/ε2).

Motivated by the fact that the Oε(
√
m) barrier is hard to overcome (see Henzinger, Krinninger,

Nanongkai, and Saranurak [HKNS15]; Kopelowitz, Pettie, and Porat [KPP16]), we study this problem

in the decremental model, where the adversary is only allowed to delete edges. Recently, Bernstein,

Probst-Gutenberg, and Saranurak (see [BGS20]) gave an O(poly(logn/ε)) update time decremental

algorithm for this problem in bipartite graphs. However, beating O(
√
m) update time remained an

open problem for general graphs.

In this paper, we bridge the gap between bipartite and general graphs, by giving an Oε(poly(logn))

update time algorithm that maintains a (1 + ε)-approximate maximum integral matching under

adversarial deletions. Our algorithm is randomized, but works against an adaptive adversary. Together

with the work of Grandoni, Leonardi, Sankowski, Schwiegelshohn, and Solomon [GLS+19] who give

an Oε(1) update time algorithm for general graphs in the incremental (insertion-only) model, our

result essentially completes the picture for partially dynamic matching.

1 Introduction

In dynamic graph algorithms, the main goal is to maintain a key property of the graph while an adversary

makes changes to the edges of the graph. An algorithm is called incremental if it handles only insertions,

decremental if it handles only deletions and fully dynamic if it handles both insertions as well as deletions.

The goal is to minimize the update time of the algorithm, which is the time taken by the algorithm to adapt

to a single adversarial edge insertion or deletion and output accordingly. For incremental/decremental

algorithms, one typically seeks to minimize the total update time, which is the aggregate sum of update

times over the entire sequence of edge insertions/deletions.

We consider the problem of maintaining a (1 + ε)-approximation to the maximum matching in a dynamic

graph. In the fully dynamic setting, the best known update time for this problem is O(
√
m) (see [GP13]),

and the conditional lower bounds proved in the works of [HKNS15] and [KPP16] suggest that O(
√
m) is

a hard barrier to break through. For this reason, several relaxations of this problem have been studied.

For example, one line of research has shown that we can get considerably faster update times if we settle

for large approximation factors (see for example [BHI15, BHN16, BK21, BS16, Waj20, RSW22, BK22]).

Another research direction has been to consider the more relaxed incremental or decremental models.

In the incremental (insertion-only) setting, there have been a series of upper and lower bound results

[BLSZ14, Dah16, Gup14], culminating in the result of [GLS+19], who gave an optimal Oε(m) total update

time (amortized Oε(1)) for (1 + ε)-approximate maximum matching.
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The decremental (deletion-only) setting requires an entirely different set of techniques. In fact, O(
√
m) up-

date time (O(m1.5) total time) remained the best known until recently, when [BGS20] gave an poly(logn/ε)

amortized update time algorithm for bipartite graphs. However, achieving a similar result for non-bipartite

graphs remained an open problem. Our main theorem essentially closes the gap between bipartite and

general graphs.

Theorem 1. Let G be an unweighted graph and let ε ∈ (0, 1/2). Then, there exists a decremental

algorithm with total update time Õε(m) (amortized Õ(1)) that maintains an integral matching M of

value at least (1 − ε) · µ(G), with high probability, where G refers to the current version of the graph.

The algorithm is randomized but works against an adaptive adversary. The dependence on ε is 2O(1/ε2).

Our result largely completes the picture for partially dynamic matching by showing that in general

graphs one can achieve poly(log n) update time in both incremental and decremental settings. But there

are a few secondary considerations that remain. Firstly, our update time is O(poly(log n)), rather than

the O(1) for the incremental setting (see [GLS+19]). Secondly, both the incremental of [GLS+19] and our

decremental result for general graphs have an exponential dependence on 1/ε, whereas incremental/decre-

mental algorithms for bipartite graphs have a polynomial dependence on 1/ε (see [GLS+19, Gup14]).

In algorithms literature, it has been the case that efficient matching algorithms for bipartite graphs

do not easily extend to general graphs. Existence of blossoms (among other things), poses a technical

challenge to obtaining analogous results for the general case. Consider the polynomial time algorithms

for maximum matching for bipartite graphs, the most efficient algorithm, using alternating BFS, was

discovered by Hopcroft and Karp; Karzanov (see [HK73, Kar73]) in 1973. However, several new structural

facts and algorithmic insights were used by Micali and Vazirani to get the same runtime for general

graphs (see [MV80]). This is also a feature of recent work in different models, such as the streaming (see

[AG11, EKMS11] and [FMU21]), fully dynamic (see [BS15, BS16] and [BHN16, BLM20]), and parallel

models (see [FGT16, ST17] and [MV00, AV20b]). We refer the reader to Section 1.3 of [AV20a] for a

detailed discussion of this phenomenon.

2 High-Level Overview

Our algorithm for Theorem 1 follows the high-level framework of congestion balancing introduced by

Bernstein, Probst-Gutenberg, and Saranurak [BGS20]. They used this framework to solve approximate

decremental matching in bipartite graphs, and also to solve more general flow problems. But the framework

as they used it was entirely limited to cut/flow problems. As we discuss below, extending this framework

to non-bipartite graphs introduces significant technical challenges. Moreover, our result shows how the

key subroutine of congestion balancing is naturally amenable to a primal-dual analysis, which we hope

can pave the way for this technique to be applied to other decremental problems.

2.1 Previous Techniques

A key observation of [BGS20] is that it is sufficient to develop an Õε(m) algorithm that does the following:

it either maintains a fractional matching of size at least (1− 2ε) · µ(G) or certifies that µ(G) has dropped

by a (1 − ε) factor because of adversarial deletions. Since a result of [Waj20] enables us to round any

bipartite fractional matching to an integral matching of almost the same value, their observation gives

an algorithm to maintain an integral matching of size (1− 3ε) · µ(G) in Õε(m) time under adversarial

deletions. To motivate why [BGS20] consider computing a fractional matching, consider the following

“lazy” algorithm that works with an integral matching: compute an (1 + ε) approximate integral matching

M of G using a static O(m/ε) algorithm, wait for ε · µ(G) edges of M to be deleted and then recompute

the matching. Since we assume an adaptive adversary, the update time could be as large as Ω(m
2
/ε·n), this

is because the adversary could proceed by only deleting edges of M . As a result, the goal should be to

maintain a robust matching that can survive many deletions. Thus, [BGS20] aim to maintain a “balanced”
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fractional matching x⃗ that attempts to put a low value on every edge. In doing so, the adversary will

have to delete a lot of edges of G to reduce the value of x⃗ by ε · µ(G).

Balanced Fractional Matching in Bipartite Graphs In order to ensure that the fractional matching

is spread out and robust, the authors of [BGS20] impose a capacity function κ on the edges of the graph

(initially, all edges have low capacity) and compute a fractional matching obeying these capacities. The

main ingredient of the algorithm is the subroutine M-or-E*(G, ε, κ) which returns one of the following in

Õε(m) time:

(a) A fractional matching x⃗ such that
∑

e∈E x(e) ⩾ (1− ε) · µ(G) and x(e) ⩽ κ(e) for all e ∈ E, or,

(b) A set of edges E∗ such that have the following two properties.

(a) The total capacity through E∗ must be small: κ(E∗) = O(µ(G) log n) and,

(b) For all |M | ⩾ (1− 3ε) · µ(G), |M ∩ E∗| ⩾ ε · µ(G).

Property (a) ensures that the total capacity increase is small, while Property (b) ensures that we only

increase capacity on important edges that are actually needed to form a large matching. The authors of

[BGS20] show that M-or-E*() can be used as a black-box to solve decremental matching: at each step,

M-or-E*() is used to find a large fractional matching x⃗ (this matching is then rounded using [Waj20] to

get an integral matching), or to output the set E∗ along which we increase capacities. They are able to

show that because of Properties (a) and (b), the edge capacities remain small on average.

The congestion balancing framework of [BGS20] thus, consists of an outer algorithm that uses M-

or-E*() as a subroutine. The outer algorithm for bipartite graphs carries over to general graphs as

well. But, M-or-E*() is significantly more challenging to implement for the case of general graphs, so

this subroutine will be our focus for the rest of the high level review. For the case of bipartite graphs

the algorithm M-or-E*() is easier to implement because maximum fractional matchings correspond to

maximum flows in bipartite graphs. Hence, existing algorithms for approximate maximum flows can be

used to find the approximate maximum fractional matching obeying capacity κ. Moreover, if such a

fractional matching is not large, then in bipartite graphs, the set of bottleneck edges is exactly a minimum

cut of the graph. For general graphs, due to the odd set constraints, max flow, which was the key analytic

and algorithmic tool in [BGS20], no longer corresponds to a maximum fractional matching that avoids

the integrality gap.

2.2 Our Contribution: Implementing M-or-E*() in General Graphs

At a high-level, there are several structural and computational challenges to implementing M-or-E*() in

the case of general graphs. We explain what the potential impediments are, and detail how our techniques

circumvent these.

Fractional Matchings in General Graphs In general graphs, not all fractional matchings have

a large integral matching in their support and therefore, cannot be rounded to give a large matching.

While fractional matchings that obey odd set constraints do avoid the integrality gap, it seems hard to

compute such a matching that also obeys capacity function κ. In order to get past this, we define a

candidate fractional matching that is both easy to compute as well as contains a large integral matching

in its support. More concretely, our fractional matching either puts flow one through an edge, or a flow of

value at most ε. It can be proved that such a fractional matching obeys all small odd set constraints, and

avoids the integrality gap. Our main contribution are two structural lemmas which show that we can find

our candidate matching efficiently.

(a) First, given a graph G with capacity κ, we want to determine if the value of the maximum fractional

matching obeying κ and odd set constraints (denoted µ(G, κ)) is at least (1− ε) · µ(G). In general

graphs, we do this by giving a sampling theorem: let Gs be the graph created by sampling edge e

with probability proportional to κ(e), then µ(Gs) ⩾ µ(G, κ)−ε ·n with high probability. Thus, µ(Gs)
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is a good proxy for µ(G, κ) and it can be estimated efficiently by running any integral matching

algorithm on Gs.

(b) Suppose we have determined at some point that µ(G, κ) is large, we are still left with the task of

finding a fractional matching. Our next contribution is a structural theorem that enables us to deploy

existing flow algorithms to find such a matching. Let M be the approximate maximum matching of

Gs. Let ML = {e ∈M | κ(e) ⩽ β} and MH = {e ∈M | κ(e) > β}, where β = O(poly(log n)), and

L and H are for low and high respectively. Let VL = V (ML) and VH = V (MH). Intuitively, M

breaks up our vertex set into two parts: vertices matched by low capacity edges (denoted VL) and

those that are matched by high capacity edges (denoted VH). By adding some slack to our capacity

constraints (we show that some slack can be incorporated in congestion balancing framework), we

are able to treat the high-capacity edges as integral and compute a matching on VH using a black

box for integral matching in general graphs. Additionally, we show that the maximum fractional

matching on low capacity edges of G[VL] has value at least as much as |ML| (the low capacity edges

of M), up to an additive error of ε · n. To compute this fractional matching, we show that because

we are only considering edges of small capacity, small odd set constraints are automatically satisfied,

so we can transform G[VL] into a bipartite graph and then use an existing flow algorithm.

The second obstacle is finding the set E∗. As mentioned before, for the case of bipartite graphs, the

max flow-min cut theorem gives us an easy characterization of the bottleneck edges. However, for the

case of general graphs, this characterization is not clear. To get around this, we consider the dual of

the matching LP of Gs, and show that the bottleneck edges can be identified by considering the dual

constraints associated with the edges. This generalizes the cut-or-matching approach of [BGS20]. Since

Gs is integral, we can compute the approximate dual by using an existing primal-dual algorithm of [DP14]

for integral matching in general graphs.

Additionally, there are some secondary technical challenges as well. As mentioned before, our structural

theorems only guarantee preservation of matching sizes up to an additive error of ε ·n. When µ(G) = o(n),

then the results, applied directly are insufficient for us. To get around this, we use a vertex sparsification

technique to get Oε(log n) multigraphs which preserve all matchings of G, but contain only O(µ(G)/ε)

vertices. However, we now have to show that all of our ideas work for multigraphs as well. Finally, the

rounding scheme of [Waj20] cannot be applied as a black-box to any fractional matching in a general

graph. Thus, unlike in [BGS20], we cannot use [Waj20] as a black box and instead have to embed its

techniques into the congestion balancing framework.

Assumption on Matching Size Let G be the input graph with vertex set V , note that if

µ(G) ⩽ 100 log |V | at any time, then we can maintain a (1 + ε) approximate matching using Definition 3.2

and Lemma 3.3 from [GP13] to solve the problem in Õ(m/ε) time. Thus, we only run our algorithm while

µ(G) ⩾ 100 log |V |. As mentioned before, our structural theorems, Lemma 29 and Lemma 40 are proved

for multigraphs H with matching size at least µ(H) = Ω(ε · |V (H)|). This is because Lemma 52 allows us

to reduce to the problem of decremental matching in multigraphs with large matching. Now, suppose

H is the multigraph obtained by running the reduction of Lemma 52 on G, the input graph. Then, the

structural theorems, Lemma 29 and Lemma 40 hold with probability at least 1 − exp(−µ(H)). Since

µ(H) = Ω(µ(G)) and µ(G) ⩾ 100 log |V |, these structural theorems hold with high probability.

3 Preliminaries

We consider the problem of maintaining an approximate maximum integral matching in a graph G in the

decremental setting. In this setting, we are given a graph (possibly non-bipartite) G0 = (V0, E0) with

|V0| = n and |E0| = m, and the adversary deletes edges from the graph one at a time. The goal is to

maintain an approximate maximum matching of the graph G as edges are deleted, while minimizing the

total update time, that is the aggregate sum of update times over the entire sequence of deletions.
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Notation. Throughout the paper, we will use G to refer to the current version of the graph, and let

V and E be the vertex and edge sets of G respectively. Additionally, let µ(G) denote the size of the

maximum integral matching of G (the current graph). During the course of the algorithm, we will maintain

a fractional matching which corresponds to a non-negative vector x⃗ ∈ R⩾0 satisfying fractional matching

constraints:
∑

e∋v x(e) ⩽ 1. For a set S ⊆ E, then we let x(S) =
∑

e∈S x(e). Given a capacity function

κ(e), we say that x obeys κ if x(e) ⩽ κ(e) for all e ∈ E. For a vector x⃗, we use supp(x⃗) to be set of edges

that are in the support of x⃗. For a fractional matching x⃗, we say that x⃗ satisfies odd set constraints if for

every odd-sized B ⊆ V ,
∑

e∈G[B] x(e) ⩽
|B|−1

2 .

Throughout this paper, for any ε ∈ (0, 1), we will let αε = log n · 260/ε2 and ρε = log n · 240/ε2 . We now

restate our main result.

Theorem 1. Let G be an unweighted graph and let ε ∈ (0, 1/2). Then, there exists a decremental

algorithm with total update time Õε(m) (amortized Õ(1)) that maintains an integral matching M of

value at least (1 − ε) · µ(G), with high probability, where G refers to the current version of the graph.

The algorithm is randomized but works against an adaptive adversary. The dependence on ε is 2O(1/ε2).

In order to solve this problem, we reduce to the case where it is sufficient to solve the same problem in

multigraphs which have a large matching. More concretely, we prove the following theorem, and then

show how that implies an algorithm for Theorem 1.

Theorem 2. We are given an unweighted multi-graph G0 = (V,E0). Let |V | = n, and ε ∈ (0, 1/2).

Suppose µ(G0) ⩾ ε·n/100 and µ ⩾ (1− ε) · µ(G). Suppose G is subject to adversarial deletions. There is

an algorithm Dec-Matching(G,µ, ε), which processes deletions in Õε(m) total update time and has the

following guarantees.

(a) When the algorithm terminates, µ(G) < (1− 2ε) · µ. Upon termination the algorithm outputs “no”.

(b) Until the algorithm terminates, it maintains an integral matching with size at least (1− 20ε) · µ.

The main contribution of our paper is to give an algorithm that proves Theorem 2. We first show

how an algorithm for Theorem 2 gives us an algorithm for Theorem 1. For this, we need the following

reduction, which has been used previously in other settings such as for stochastic matchings (see for

example [AKL19] and [CCE+16]). Here, we use it in the decremental setting.

Lemma 3. [AKL19] Let δ ∈ (0, 1) and let G be a graph with maximum matching size at least µ and

at most (1 + δ) · µ. There is an algorithm Vertex-Red(G,µ, δ) that takes as input G, µ, and δ, and

in O(m · logn/δ4) time returns λ = 100·logn
δ4 multi-graphs H1, · · · , Hλ that have the following properties,

where the second property holds with probability at least 1− exp (−µ·logn/δ4).

(a) For all i ∈ [λ], |V (Hi)| = 4·(1+δ)·µ
δ and E(Hi) ⊆ E(G).

(b) Suppose G is subject to deletions, which we simulate on each of the Hi’s. More concretely, if an

edge e is deleted from G, then its copy in each of the Hi’s (if present) is also deleted. Suppose at

the end of the deletion process, µ(G) ⩾ µ̃ for some µ̃ ⩾ (1− 2δ) · µ. Then, µ(Hi) ⩾ (1− δ) · µ̃ for

some i ∈ [λ].

Additionally, we will need the following algorithm to compute an integral matching in the static setting

in general graphs (see [DP14]).

Lemma 4. [DP14] There is an O(m/ε) time algorithm Static-Match() that takes as input a graph G,

and returns an integral matching M of G with |M | ⩾ (1− ε) · µ(G).

We now show how Theorem 2 in combination with Lemma 3 and Lemma 4 implies Theorem 1. We

first give an informal description of the algorithm.
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Description of Algorithm for Theorem 1 (Algorithm 1) The algorithm takes as input a graph G,

and a parameter ε > 0. It first estimates the size of the maximum matching of G by running Static-

Match(G, ε) on input G and ε. We denote this estimate by µ. The algorithm then initiates a procedure

to create multiple parallel instances of the algorithm Dec-Matching(). As mentioned in Theorem 2, the

algorithm Dec-Matching() can maintain a (1 + ε)-approximate maximum matching in a multi-graph,

provided the size of the matching in the multi-graph is large. So, we use the reduction mentioned in

Lemma 3 which creates multigraphs H1, H2, · · · , Hλ, which have have O(µ(G)/ε) vertices as opposed to n

vertices, and we run parallel instances of Dec-Matching(Hi, µ · (1− ε), ε) for all i ∈ [λ]. This procedure

also instantiates a pointer cur, which points to the least indexed Hi, with a matching of size at least

(1− ε) · µ. The algorithm will output the matching indexed by cur (denoted Mcur). The algorithm then

moves on to a procedure for handling deletions of edges. If an edge e ∈ G is deleted, then it is deleted

from each of the Hi’s. If at this point, the size of the matching of any Hcur by a large value, then we

increment the value of cur. If the sizes of the maximum matchings of all Hi have dropped by a significant

amount, then we can conclude that with high probability, µ(G) has also dropped by a significant amount

(by Lemma 3(b)), and we restart the algorithm.

Proof of Theorem 1. We show that Algorithm 1 proves Theorem 1. Suppose we run Algorithm 1 on

G, ε. We first argue that it returns an integral matching of G of size at least (1 − 10ε) · µ(G), where

µ ⩾ µ(G) · (1 − ε). To see this, first observe that the multi-graphs H1, · · · , Hλ obtained as an out-

put of Vertex-Red(G,µ · (1 + ε), ε) have 4·(1+ε)·µ
ε ⩽ 8·µ/ε vertices, and µ(Hi) ⩾ (1 − ε) · µ. Thus,

Hi satisfy the requirements of Dec-Matching() mentioned in Theorem 2. Hence, each instance of

Dec-Matching(Hi, µ, ε), until it returns no, maintains a matching of size at least (1− 9ε) · µ, which is

at least (1− 10ε) · µ(G).

We now want to bound the runtime of the algorithm. To do this, we first make the following claim.

Claim 5. Each time Algorithm 1 executes Line 32, µ(G) has dropped by a factor of (1− 2ε).

Proof. First observe that every time the algorithm returns to Line 1, it must be the case that all the

Dec-Matching(Hi, µ · (1 − ε), ε) returned no, which implies by Theorem 2(a) that for all i ∈ [λ],

µ(Hi) < (1− 2ε) · (1− ε) · µ. This in turn implies that µ(G) < (1− 2ε) · µ. Suppose for contradiction

that this is not the case, then from Lemma 3(b) we can conclude that there is a matching of size at least

(1−3ε)·µ in some Hi. More specifically, if µ(G) ⩾ (1−2ε)·µ, then it satisfies the hypothesis of Lemma 3(b),

and we know that µ(Hi) ⩾ (1−3ε) ·µ for some i ∈ [λ]. This implies that Dec-Matching(Hi, (1−ε) ·µ, ε)
wouldn’t have terminated for some i ∈ [λ] (by Theorem 2(a)). Consequently, Line 32 wouldn’t have been

executed, which is a contradiction. Thus, each time we execute Line 32, µ(G) has dropped from at least µ

to at most (1− 2ε) · µ. This proves our claim.

From Claim 5, we can conclude that we return to Line 3 at most log1+ε n times. Thus, to upper

bound the runtime of Algorithm 1, it is sufficient to upper bound the runtime of each of the procedures.

The runtime of the first procedure, which instantiates λ instances of Dec-Matching(Hi, µ · (1− ε), ε) is

dominated by the runtime of Vertex-Red(G,µ, ε), which is run once in the procedure, and the runtime

of Static-Match(Hi, ε) which is run λ times (once per multi-graph Hi). Thus, the total time of this

procedure is O(m/ε · log 1/ε · λ), which is O(m/ε5 · log n · log 1/ε).

Next, we upper bound the runtime of the second procedure. If an edge e is deleted from G, then

the time to delete it from each of the multigraphs H1, · · · , Hλ is λ. Finally, we are also maintaining at

most λ active instances of Ai, and their total update time is Oε(m · poly(log n)). Consequently, we have

that the total update time of Algorithm 1 is Oε(m · poly(log n)).

4 Algorithm for Theorem 2

We use µ(G, κ) to denote the value of the maximum fractional matching of G obeying the capacity

function κ and the odd set constraints. To give an algorithm for Theorem 2, we need two ingredients. We
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Algorithm 1

Input: Graph G and a parameter ε > 0

Output: A matching M with |M | ⩾ (1− 8ε) · µ(G)

1: M ← Static-Match(G, ε).

2: µ← |M |
3: procedure Instantiating Dec-Matching()

4: i← 1.

5: cur← λ+ 1.

6: Let H1, H2, · · · , Hλ be the multi-graphs returned by Vertex-Red(G,µ, ε).

7: Label H1, · · · , Hλ as active.

8: for i ⩽ λ do

9: if |Static-Match(Hi, ε)| < (1− ε) · µ then

10: Label Hi as inactive.

11: end if

12: end for

13: for Hi labelled active do

14: Initialize Dec-Matching(Hi, µ · (1− ε), ε) (denoted Ai).

15: Let Mi be the matching maintained by Ai.

16: end for

17: Let cur be the least index i such that Hi is active.

18: if cur > λ then

19: terminate.

20: end if

21: end procedure

22: procedure Handling deletion of edge e

23: for Hi labelled active do

24: Feed the deletion of e to Ai.

25: if Ai returns no then

26: Label Hi as inactive.

27: end if

28: end for

29: if Hcur labelled active then ▷ Label may changed in Line 24.

30: Continue to output Mcur.

31: else

32: if cur > λ then

33: Return to Line 1. ▷ Start over with new estimate for µ.

34: else

35: cur← cur+ 1

36: Goto Line 29.

37: end if

38: end if

39: end procedure
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first maintain a balanced fractional matching of the multigraph. To do this, we will show an algorithm

M-or-E*() that given as input a capacitated graph G either outputs a fractional matching nearly obeying

these capacities if µ(G, κ) ⩾ (1 − ε) · µ(G), or if µ(G, κ) < (1 − ε) · µ(G), it outputs a set of edges E∗

along which capacities must be increased. When we say that the capacities are nearly obeyed, we mean

that the can be exceeded only by a small factor. Then, we round the fractional matching using a known

algorithm. We start with some definitions, and then go on to state the guarantees of the two algorithms,

and show how it gives us an algorithm for Theorem 2.

Definition 6. Given a multi-graph G, for a pair of vertices u and v, define D(u, v) to be the set of edges

between u and v. Similarly, if e is an edge between u, v, then D(e) := D(u, v).

Definition 7. Let G be a multigraph with n vertices and m edges. Let κ be a capacity function on the

edges. Suppose x⃗ is a fractional matching of G (x⃗ is a vector of length m). Then, we define x⃗C to be a vector

of support size at most min
{
m,
(
n
2

)}
, where for a pair of vertices, u and v, xC(u, v) :=

∑
e∈D(u,v) x(e).

Essentially, if x⃗ is a fractional matching on a multigraph, then x⃗C is a fractional matching obtained by

“collapsing” all edges together. Similarly, if y⃗ is a vector of support at most
(
n
2

)
, then we define y⃗D to be

an m length vector such that for every e ∈ E between a pair of vertices u and v, yD(e) := y(u,v)·κ(e)
κ(D(e)) (D is

for distributed, and we distribute the flow among the edges in proportion to their capacity).

Remark 8. Note that in doing the transformations in Definition 7, the support size of the transformed

vector is always at most m. Thus, it doesn’t negatively affect our runtime.

We now state our core ingredient, which either finds a balanced fractional matching of the multigraph

G, or gives a set of edges E∗ along which we can increase capacity.

Lemma 9. Let G be a multi-graph with µ(G) ⩾ ε·n/16. Let κ be a capacity function on the edges of G.

There is an algorithm M-or-E*(), that takes as input G, κ, ε ∈ (0, 1/2) and µ ⩾ (1− ε) · µ(G) and in time

O(m·logn/ε) returns one of the following.

(a) A fractional matching x⃗ of value at least (1− 10ε) · µ with the following properties.

(i) For any e ∈ supp(x⃗) with κ(D(e)) > 1/α2
ε, x(e) =

κ(e)
κ(D(e)) , and x(D(e)) = 1.

(ii) For any e ∈ supp(x⃗) with κ(D(e)) ⩽ 1/α2
ε, x(e) ⩽ κ(e) · αε and x(D(e)) ⩽ κ(D(e)) · αε.

(b) A set E∗ of edges such that κ(E∗) = O(µ log n) such that for any integral matching M with

|M | ⩾ (1 − 3ε) · µ, we have |M ∩ E∗| ⩾ εµ. Moreover, κ(e) < 1 for all e ∈ E∗. Additionally, for

every pair of vertices u, v ∈ V , either D(u, v) ∩ E∗ = ∅ or D(u, v) ⊆ E∗.

We give some intuition for Lemma 9. Recall that we need a balanced fractional matching that contains

a large integral matching in its support. However, as mentioned before, in the case of general graphs,

finding such a balanced fractional matching is not straightforward. In order to get past this obstacle, we

define a balanced fractional matching that is easy to find and also avoids the integrality gap. We will

explain how to find it in the subsequent sections. For now, we explain at a high-level, why the fractional

matching x⃗ found by Lemma 9 avoids the integrality gap. Consider x⃗C . Observe from Lemma 9(a),

that for any pair of vertices u, v ∈ G, either xC((u, v)) = 1 or xC((u, v)) ⩽ ε. Thus, x⃗ satisfies odd-set

constraints for all odd sets of size at most 1/ε. By a folklore lemma, we can then argue that x⃗ contains an

integral matching of size at least (1 + ε)−1 ·
∑

u̸=v x
C((u, v)).

We will use M-or-E*() as a subroutine in the algorithm Dec-Matching(). The fractional match-

ing output by M-or-E*() will have certain properties, we state these properties now, since it will be

helpful in visualizing the fractional matching. We give a proof for these later on.

Property 10. We will use M-or-E*(G,µ, κ, ε) as a subroutine in Dec-Matching(G,µ, ε) to get a

matching x⃗ with the following properties.

(a) Each time M-or-E*() returns the set E∗, we increase capacity along E∗ by multiplying κ(e) for

each e ∈ E∗ by the same factor.
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(b) Consider u, v ∈ V and let e and e′ be edges in between u, v. Then, κ(e′) = κ(e) at all times during

the run of the algorithm.

The next property follows immediately from Lemma 9(a).

Property 11. Let x⃗ be the matching output by M-or-E*(G,µ, κ, ε), then x(e) ⩽ κ(e) · α2
ε for all e ∈ E.

Definition 12. Let G be a multi-graph, let κ be a capacity function on the edges of G and let x⃗ be

a fractional matching obeying κ. Let ε ∈ (0, 1). Then, we split x⃗ into two parts, x⃗f and x⃗i, where

x⃗ = x⃗f + x⃗i, and supp(x⃗f ) = {e ∈ E | κ(D(e)) < 1/α2
ε} and supp(x⃗i) = {e ∈ E | κ(D(e)) ⩾ 1/α2

ε} (here, x⃗f

stands for fractional and x⃗i stands for integral. Although the edges in x⃗i are not technically integral, they

are large enough for us to round them).

We briefly state the implications of this definition. We do not use these properties in our proof, but it

will be useful to state it nevertheless.

Property 13. Let G be any multigraph, and let x⃗ be a fractional matching of G. Then, for any

pair of vertices u, v, either D(u, v) ⊆ supp(x⃗i) and D(u, v) ∩ supp(x⃗f ) = ∅ or, D(u, v) ⊆ supp(x⃗f ) and

D(u, v) ∩ supp(x⃗i) = ∅.

Observation 14. Suppose x⃗ is a fractional matching returned by M-or-E*() and consider z⃗ = x⃗i. Then

supp(z⃗C) is a matching. This is implied by Lemma 9(a)(i).

The second ingredient is a method to round fractional matchings. This theorem is implicit in [Waj20],

however, we prove it in Appendix D for completeness.

Lemma 15. [Waj20] Suppose G is an unweighted simple graph, let ε ∈ (0, 1/2), and let x⃗ be a fractional

matching of G such that x(e) ⩽ ε6. Then, there is a dynamic algorithm Sparsification(x⃗, ε), that has

the following properties.

(a) The algorithm maintains a subgraph H ⊆ supp(x⃗) such that |E(H)| = Oε(µ(supp(x⃗)) · poly(log n)),
and with high probability µ(H) ⩾ (1− ε) ·

∑
e∈E x(e).

(b) The algorithm handles the following updates to x⃗: the adversary can either remove an edge from

supp(x⃗) or for any edge e, the adversary can reduce x(e) to some new value x(e) ⩾ 0.

(c) The algorithm handles the above-mentioned updates in Õε(1) worst-case time.

We now show how M-or-E*() and Sparsification() give us an algorithm for Theorem 2. This

algorithm, called Dec-Matching() is stated in Algorithm 2. Before proving Theorem 2, we give a brief

description of Algorithm 2.

Description of Dec-Matching(). The algorithm takes as input a multigraph H, a parameter ε, an

estimate µ on the size of the maximum matching of H. It then instantiates the capacities of the graph H.

The algorithm then starts a new phase by running M-or-E*() on this capacitated graph. The algorithm

returns either a large fractional matching or if the matching is small, then it outputs a set of edges E∗.

The algorithm Dec-Matching() in the latter case, increases capacities along E∗. Suppose at some point

the algorithm finds a large fractional matching x⃗. Recall that x⃗ output by M-or-E*() is a matching with

the following property: consider x⃗C , then either xC((u, v)) = 1 or xC((u, v)) ⩽ 1/αε (this is guaranteed by

Lemma 9(a)). The algorithm extracts the latter part, and sparsifies it using Sparsification(). Since

the fractional matching input to Sparsification() has flow at most 1/αε between any pair of vertices, it

satisfies the hypothesis of Lemma 15 and obtain a graph S containing Õ(µ(H)) edges and a large integral

matching. Thus, Stat-Match(S, ε) is run and this matching is combined with the “integral” part of x⃗

and is output.
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Algorithm 2 Dec-Matching(H,µ, ε)

1: For all e ∈ E(H), κ(e)← 1/α⌈logαε n⌉
ε

2: procedure Starting a new phase

3: µ′ ← Static-Match(H, ε) ▷ µ′ ⩾ (1− ε) · µ(H)

4: if µ′ ⩽ (1− 3ε) · µ then

5: Return no, and terminate.

6: else

7: while M-or-E*(H,κ, ε, µ′) returns E∗ do

8: For all e ∈ E∗, κ(e)← κ(e) · αε

9: end while

10: end if

11: end procedure

12: Let x⃗ be the matching returned by M-or-E*(). ▷ This is a matching in a multigraph.

13: y⃗ ← x⃗f , z⃗ ← x⃗i ▷ We will update y⃗, z⃗ as edges are deleted.

14: S ← Sparsification(y⃗C , ε) ▷ Recall that Sparsification is dynamic

15: M ← Static-Match(S, ε) ∪ supp(z⃗C). ▷ The matching M that is output.

16: CounterM← 0 ▷ Counter for deletions to the integral matching.

17: Counterx← 0 ▷ Counter for deletions to the fractional matching.

18: procedure For deletion of edge e from H

19: if e ∈ supp(x⃗) then

20: Delete e from supp(x⃗)

21: Update z⃗C accordingly. ▷ See Line 13.

22: Update y⃗C accordingly; Sparsification from Line 14 then updates S.

23: Counterx ← Counterx +x⃗(e).

24: end if

25: if Counterx > ε · µ then

26: Goto Line 3 ▷ End current phase and start new one.

27: end if

28: if e ∈M then

29: Delete e from M

30: CounterM ← CounterM +1

31: end if

32: if CounterM > ε · µ then ▷ The matching M is out of date

33: CounterM← 0

34: M ← Static-Match(S, ε) ∪ supp(z⃗C) ▷ Recompute outputted matching M

35: end if

36: end procedure

The algorithm then begins a procedure to handle deletions. If an edge e is deleted, then it is removed

from supp(x⃗), and Sparsification() algorithm updates S in Õε(1) worst case time (Lemma 15(c)). The

algorithm also maintains counters for deletions to x⃗ and M . If the total value deleted from x⃗ exceeds ε · µ,
then it ends the current phase, and starts a new one. On the other hand, if the number of edges deleted

from M exceeds ε · µ, then, the algorithm recomputes M by running Static-Match(S, ε) again (since we

know that x⃗ still contains a large integral matching in its support).

We also state the following lemma which we prove later in Section 5.

Lemma 16. The subroutine M-or-E*() and Line 3 are called at most O(α3
ε log n) times in Algorithm 2

during the course of deletion of m edges.

We restate our theorem and give a proof.

Theorem 2. We are given an unweighted multi-graph G0 = (V,E0). Let |V | = n, and ε ∈ (0, 1/2).

Suppose µ(G0) ⩾ ε·n/100 and µ ⩾ (1− ε) · µ(G). Suppose G is subject to adversarial deletions. There is
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an algorithm Dec-Matching(G,µ, ε), which processes deletions in Õε(m) total update time and has the

following guarantees.

(a) When the algorithm terminates, µ(G) < (1− 2ε) · µ. Upon termination the algorithm outputs “no”.

(b) Until the algorithm terminates, it maintains an integral matching with size at least (1− 20ε) · µ.

Proof of Theorem 2. We first argue that Algorithm 2 satisfies the properties of Theorem 2. First observe

that when the algorithm executes Line 5, µ′ ⩽ (1− 3ε) · µ. Since µ′ ⩾ (1− ε) · µ(H), this implies that

µ(H) ⩽ (1−2ε) ·µ. Thus, when the algorithm terminates, µ(H) ⩽ (1−2ε) ·µ, which proves Theorem 2(a).

Next, we want to argue that while the algorithm does not terminate, it outputs an integral match-

ing of size at least µ · (1− 20ε). This corresponds to Theorem 2(b). We first argue that the algorithm

indeed outputs matching. Note that the output matching M is the union of supp(z⃗C) and the output

of Sparsification(y⃗C , ε). Note that M is a union of two matchings, is implied by Observation 14 and

Lemma 15. Moreover, these matchings are vertex disjoint and this follows from Property 13. Thus, M is

a matching.

Next,we want to argue that |M | ⩾ (1− 20ε) · µ. First, observe that the fractional matching output by M-

or-E*() has value at least (1−10ε) ·µ. Next, observe that because of Lemma 9(a)(ii), the matching output

by M-or-E*() satisfies the conditions of Lemma 15: that is, y⃗C has the property that the flow through any

edge in the support, y⃗C(e) ⩽ 1/αε ⩽ ε3. Thus, µ(S) ⩾ (1− ε) ·
∑

e∈supp(y⃗C) y
C(e). Therefore, the matching

output by Sparsification(y⃗C , ε) is an integral matching of size at least (1 − 2ε) ·
∑

e∈supp(y⃗C) y⃗
C(e).

Thus, we can conclude,

|M | ⩾
∑

e∈supp(x⃗i)

x(e) + (1− 2ε) ·
∑

e∈supp(x⃗f )

x(e) ⩾ (1− 2ε) ·
∑

e∈supp(x⃗)

x(e)

⩾ (1− 2ε) · (1− 10ε) · µ ⩾ (1− 12ε) · µ.

Thus, the algorithm maintains an integral matching of size at least (1− 20ε) · µ at all times.

Running Time: We now bound the runtime of the algorithm. Let us first consider the time to

initialize a phase. From Lemma 16 we know that M-or-E*() is called O(α3
ε log n) times, so this is also

an upper bound on the number of phases. Thus, Static-Match() in Lines 3 and 15 is also called at

most O(α3
ε log n) times, since these are only called once per phase. All of these subroutines have runtime

Õε(m), so since each is executed Õε(1) times, the total runtime of all of them is Õε(m).

We also need to bound the runtime of Sparsification(y⃗C , ε) and the total contribution of Static-

Match() in Line 34. Let us start by bounding the runtime of Sparsification(). The time to initialize

this procedure in Line 14 is Õ(m), and this is only done once per phase, so again the total time spent on

initialization is Õ(m). We also spend time updating the output sparsifier S in Line 22. The worst-case

runtime time of Sparsification() is O(log n) per update to x⃗ (see Lemma 15(b) and (c)). But each

update to x⃗ corresponds to an adversarial deletion of some edge e, so there at most m adversarial deletions,

so the total overall time (among all phases) to update Sparsification is Õ(m).

Finally, we want to count the contribution of Static-Match() in Line 34. Observe that by Lemma 15,

the subgraph S has size Õ(µ). Thus, the runtime of Static-Match(S, ε) is Õ(µ/ε). Now, observe that

Line 34 is only executed when CounterM has increased from 0 to ε · µ, and the counter increases by at

most 1 per adversarial deletion, so there are at least ε · µ adversarial deletions per execution of Line 34.

Thus, Stat-Match(S, ε) is called at most m/ε·µ times in Line 34, and the total contribution here is

O(m/ε2).
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5 Proof of Lemma 16

To prove Lemma 16, which gives an upper bound on the number of times the subroutine M-or-E*()

is called in Algorithm 2, we will follow the framework of [BGS20]. We will define a potential function,

and show that it increases as κ is increased, and edges are deleted. While their framework applies to

simple graphs, we verify that it is possible to extend it to multigraphs as well. Towards this, we give a

few definitions.

Definition 17. Let G be a multigraph, and let κ be the capacity function on the edges of the graph (if

the adversary deletes an edge e, then let κ(e) be the capacity of the edge right before it is deleted). Let µ

be the input to Dec-Matching(), when it is run on G, ε. LetM be the set of all integral matchings of

G of size at least (1 − 3ε) · µ. Define the cost of an edge e to be c(e) = log (n · κ(e)). For any integral

matching M , define c(M) =
∑

e∈M c(e). Define Π(G, κ) = minM∈M c(M). IfM = ∅, then Π(G, κ) =∞.

Observation 18. Initially, κ(e) = 1/α⌈logαε n⌉
ε , so Π(G, κ) = 0. Note that capacities κ only change

(increase) in Line 8. Consequently, the capacity function κ is monotonically increasing. Moreover, edges

of G are only deleted. Thus, Π(G, κ) is monotonically increasing as well.

Observation 19. When Π(G, κ) =∞, then Line 5 of Algorithm 2 causes the algorithm to terminate.

Proof. Suppose Line 5 doesn’t cause Algorithm 1 to terminate, then, µ′ ⩾ (1− 3ε) ·µ. Thus, µ(G) ⩾ µ′ ⩾
(1− 3ε) · µ, andM ≠ ∅.

Lemma 20. In Dec-Matching(), we say that we begin a new phase when ε · µ value of the fractional

matching x⃗ has been deleted (that is, the value of Counterx has increased to ε · µ). Suppose we are

in a phase when the algorithm does not terminate. Let κ be the final capacities right before we process

deletions. Then, Π(G, κ) = O(µ log n).

Proof. First observe that for any edge e, κ(e) ⩽ 1, so c(e) = O(log n). This is implied by the fact that E∗

only consists of edges that have κ(e) < 1 and κ(e) is a power of αε (see Lemma 9(b)). This is because, we

start with κ(e) to be a power of αε initially (see Line 1), and each time we increase κ(e), we multiply it

by αε. Moreover, for any matching M , we know that |M | ⩽ µ · (1 + ε), since, µ ⩾ µ(G) · (1− ε). Thus,

c(M) ⩽ (1 + ε) · µ · log n. This implies that Π(G, κ) = O(µ log n).

Definition 21. Let E0 be the initial set of edges and let κ(E0) =
∑

e∈E0
κ(e).

Lemma 22. Suppose a call to M-or-E*(G,µ, κ, ε) returns the set E∗ instead of a matching. Let κ′

denote the new edge capacities after increasing capacities along E∗. Then,

(a) κ′(E0) ⩽ κ(E0) + αε · µ · log n, and

(b) Π(G, κ′) ⩾ Π(G, κ) + µ/ε.

Proof. We begin by recalling Lemma 9(b) that κ(E∗) ⩽ µ log n. Thus, κ′(E∗) = O(αε · µ · log n), since it

is obtained by scaling up κ(E∗) by a αε. Thus, we have,

κ′(E0) = κ(E0 \ E∗) + κ′(E∗)

This implies that:

κ′(E0)− κ(E0 \ E∗) = κ′(E∗) = αε · µ · log n

The LHS is lower bounded by κ′(E0)− κ(E0), since κ(E0) ⩾ κ(E0 \E∗). This proves the first part of our

claim. To prove the second part, first notice that E∗ contains at least ε · µ edges of every matching of size

at least (1− 3ε) · µ (implied by Lemma 9(b)). Let M,M ′ ∈M be the matchings that minimize Π(G, κ)

and Π(G, κ′) respectively, and let c and c′ be the cost functions associated with κ and κ′ respectively.

Observe that |M | ⩾ (1− 3ε) · µ and |M ′| ⩾ (1− 3ε) · µ (by definition ofM, see Definition 17). Then, we

have the following.

Π(G, κ′) = c′(M ′) =
∑
e∈M ′

log (n · κ′(e)) =
∑

e∈M ′\E∗

log (n · κ(e)) +
∑

e∈M ′∩E∗

log (n · κ(e) · αε)
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=
∑
e∈M ′

log (n · κ(e)) + |M ′ ∩ E∗| · logαε

= c(M ′) + µ/ε ⩾ Π(G, κ) + µ/ε

(Since |M ′ ∩ E∗| ⩾ ε · µ and αε = 2
32/ε2)

This proves our claim.

Observation 23. The total number of calls to M-or-E*() (till Dec-Matching() terminates) that return

E∗ are upper bounded by O(ε · log n). This is because the potential function Π(G, κ) is upper bounded by

O(µ log n), and each call to M-or-E*() that returns E∗, increments Π(G, κ) by µ/ε (see Lemma 22(b)).

Thus, we can deduce that κ(E0) ⩽ αε · µ · ε · log n. This is because each call to M-or-E*() that returns

E∗ increases κ(E0) by at most αε · µ · log n (see Lemma 22(a)), and there are at most ε · log n such calls.

We now want to upper bound the number of calls made to M-or-E*() that return a matching. This

is upper bounded by the number of phases.

Lemma 24. The total number of phases is at most O(α3
ε · log n).

Proof. We define Φdel :=
∑

e∈Edel
κ(e) to be the capacity of deleted edges. Observe that Φdel ⩽ κ(E0) ⩽

αε · ε · µ · log n. This is implied by the definition of κ(E0) and Observation 23. Moreover, each time we

start a new phase, at least ε · µ value of the fractional matching has been deleted. That is
∑

e∈E x(e)

has dropped by ε · µ. From Property 11, one can conclude that for any edge e, x(e) ⩽ α2
ε · κ(e). This

implies that a phase contributes at least ε·µ/α2
ε to Φdel. Using the fact that Φdel is upper bounded by

αε · ε · µ · log n, we can conclude that the total number of phases is at most α3
ε · log n.

Proof of Lemma 16. From Lemma 24 and Observation 23, we conclude that the total number of calls to

M-or-E*() are upper bounded by O(α3
ε · log n). Finally, the number of calls to Static-Match() due to

Line 3 are upper bounded by the number of phases, which are at most O(α3
ε · log n) by Lemma 24.

6 Ingredients for Algorithm M-or-E*()

Recall that we use µ(G, κ) to denote the value of the maximum fractional matching of G obeying capacity

function κ and the odd set constraints. As in the congestion balancing setup of [BGS20], we want to

check if µ(G, κ) ⩾ (1 − ε) · µ(G). However, unlike in bipartite graphs, where we can use flows to find

fractional matching, there is no simple way to check if µ(G, κ) ⩾ (1− ε) · µ(G) in general graphs. Our

first structural result circumvents this issue. Let Gs be the graph obtained by sampling every edge e

with probability p(e) = min {1, κ(e) · ρε}. We show that µ(Gs) ⩾ µ(G, κ)− ε · µ(G). Thus, we can run

Static-Match(Gs, ε) to estimate µ(G, κ).

At a high level, M-or-E*() proceeds in three phases. In Phase 1, it creates Gs and computes µ(Gs).

If this matching is large, it proceeds to Phase 2, where it finds a fractional matching x⃗ such that∑
e∈E x(e) ⩾ (1 − ε) · µ(G). On the other hand, if µ(Gs) is small, then it proceeds to Phase 3, where

it finds the set of edges E∗ along which it increases capacity. In the subsequent sections, we will state

the main structural properties we use in each of the phases. Finally, in Section 5, we put together these

ingredients to give M-or-E*(), and prove Lemma 9.

6.1 Phase 1 of M-or-E*()

Before we formally state the main guarantees of Phase 1, we will state some standard results in matching

theory, that we will use in our main result for Phase 1.
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Figure 1: The figure shows the graph G, and a partition P = {U,E1, · · · , Eq, O1, · · · , Ot} satisfying
(a) and (b). The thick edges (in red and purple), are the edges in supp(x⃗), where x⃗ is the fractional

matching realizing µ(G, κ). The purple edges (edges between the odd components, or between odd and

even components) correspond to EP
miss, and

∑
e∈EP

miss
x(e) ⩾ 2 · ε · µ(G).

6.1.1 Some Standard Ingredients For Phase 1

The first ingredient we use is the Tutte-Berge formula.

Definition 25. Let G be any graph (possibly containing multiedges), and let U ⊆ V , then oddG(V \ U)

refers to the number of odd components in G[V \ U ].

Lemma 26 (Tutte-Berge Formula). [Sch03] The size of a maximum matching in a graph G = (V,E) is

equal to 1
2 min
U⊆V

(|U |+ |V | − oddG(V \ U)).

Additionally, we will use some properties of the matching polytope.

Lemma 27. [Sch03] Let G be any graph, and let x⃗ be a fractional matching that in addition to the

fractional matching constraints, also satisfies the following for all odd-sized U ⊆ V :
∑

e∈G[U ]

x(e) ⩽ |U |−1
2 .

Then, there is an integral matching M ⊆ supp(x) with |M | =
∑

e∈E x(e).

Definition 28. Let G be any multigraph, and let S, T ⊆ V , then δG(S, T ) is defined as the set of edges

that have one endpoint in S and the other in T . Additionally, for S ⊆ V , we define δG(S) to be the set of

edges that have one end point in S, and the other in V \ S.

6.1.2 Main Lemma for Phase 1

As mentioned earlier, in Phase 1 of M-or-E*(), we first create a sampled graph Gs. In the following

lemma, we show that µ(Gs) is a good estimate for µ(G, κ) with high probability.

Lemma 29. Let G be a multigraph with µ(G) ⩾ ε·n/16 where ε ∈ (0, 1/2). Let κ be a capacity

function on the edges of G, and let Gs be obtained by sampling every edge e ∈ G with probability

p(e) = min {κ(e) · ρε, 1}. Let µ(G, κ) be the value of the maximum fractional matching of G obeying the

capacities κ, and the odd set constraints. Then, with high probability, µ(Gs) ⩾ µ(G, κ)− ε · µ(G).

Proof. We want to show that with probability at least 1−1/n2, µ(Gs) ⩾ µ(G, κ)−ε·µ(G). In order to do this,

by Lemma 27, it is sufficient to show that with probability at least 1−1/n2, 1
2 min
U⊆V

(|U |+ |V | − oddGs
(V − U)) ⩾

µ(G, κ)− ε · µ(G).
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Towards this, we consider a fixed partition P of V into sets U,O1, · · · , Ot, E1, · · · , Eq with the following

properties (see Figure 1).

(a) We have, q ⩾ 0 and t > n− 2 · µ(G, κ) + 2ε · µ(G) + |U |.

(b) Sets Oi for i ∈ [t] are odd-sized sets and sets El for l ∈ [q] are even-sized sets.

Note that if µ(Gs) < µ(G, κ) − ε · µ(G), then there is a partition P = {U,O1, · · · , Ot, E1, · · · , Eq} of

Gs, satisfying (a) and (b) such that V \ U is the union of components O1, · · · , Ot, E1, · · · , Eq. Note

that if V \ U is the union of disjoint components O1, · · · , Ot, E1, · · · , Eq then δGs(Oi, Ol) = ∅ for all

i ̸= l and δGs
(Oi, El) = ∅ for all i ≠ l (this is evident from Lemma 26). Thus, to upper bound

the probability that µ(Gs) < µ(G, κ) − ε · µ(G), it is sufficient to upper bound the probability that

for all partitions P = {U,O1, · · · , Ot, E1, · · · , Eq} satisfying (a) and (b), none of the edges EP
miss =

{e | e ∈ δG(Oi, Ol) for i ̸= l}∪{e | e ∈ δG(Oi, El) for i ∈ [t], l ∈ [q]} are sampled in Gs. In order to bound

this probability, we make the following claim.

Claim 30. For a partition P satisfying (a) and (b), κ(EP
miss) ⩾ 2 · ε · µ(G).

Proof. Let x⃗ be a fractional matching obeying odd set constraints and capacity function κ such that∑
e∈E x(e) = µ(G, κ). In order to prove this claim, we show that if κ(EP

miss) < 2 · ε · µ(G), then,

x(EP
miss) > κ(EP

miss), which will contradict the fact that x⃗ is a fractional matching obeying κ.

With this proof strategy in mind, for contradiction assume that κ(EP
miss) < 2 · ε · µ(G) ⩽ n− 2 · µ(G, κ) +

2 · ε ·µ(G). The last inequality follows from the fact that µ(G, κ) corresponds to the value of the maximum

fractional matching, so, µ(G, κ) ⩽ n
2 . Since x⃗ obeys odd set constraints,

∑
l⩽t x(δG(Ol)) ⩾ t (from

Lemma 27). Note that
∑

l⩽t x(δG(Ol, U)) ⩽ |U |, otherwise for some v ∈ U ,
∑

e∋v x(e) > 1, violating the

fact that x⃗ is a fractional matching. Next, we observe that
∑

l⩽t x(δG(Ol)) = x(EP
miss)+

∑
l⩽t x(δG(Ol, U)).

This follows from the fact that all edges emanating out of Oi in G, are either incident on other Oj , or Ek

or U . We have the following set of inequalities.

x(EP
miss) =

∑
l⩽t

x(δG(Ol))−
∑
l⩽t

x(δG(Ol, U))

⩾ t− |U |
> n− 2 · µ(G, κ) + 2 · ε · µ(G) + |U | − |U |

Thus, that x(EP
miss) ⩾ n − 2µ(G, κ) + 2εµ(G) > κ(EP

miss). This is a contradiction. This concludes our

proof, and we know that κ(EP
miss) ⩽ 2 · ε · µ(G).

Additionally, we have the following claim, which allows us to only focus on P for which all e ∈ EP
miss

have κ(e) < 1/ρε.

Observation 31. Suppose κ(e) ⩾ 1/ρε for any e ∈ EP
miss, then,

Pr
(
None of the edges in EP

miss are sampled in Gs

)
= 0.

The above observation follows from the fact that an edge e is sampled with probability min {1, κ(e) · ρε}.
From the above claim, we can deduce that if for any partition P, if EP

miss has an edge e with κ(e) ⩾ 1/ρε,

then the contribution of EP
miss to our probability bound will be 0. Hence, it is sufficient to focus on EP

miss

where all edges e have κ(e) < 1/ρε. We now bound the following probability.

Pr
(
None of the edges in EP

miss are sampled in Gs

)
⩽

∏
e∈EP

miss

(1− p(e))

⩽ exp

− ∑
e∈EP

miss

p(e)
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= exp

− ∑
e∈EP

miss

κ(e) · ρε


(Since p(e) = κ(e) · ρε (from Claim 31 and discussion above))

= exp
(
−ε · 216/ε2 · µ(G) · log n

)
(From Claim 30 and the fact that ρε = 2

16/ε2 · log n)

⩽ exp
(
−215/ε2 · µ(G) · log n

)
.

Note that the total number of partitions of graph G are upper bounded by 2n·logn. Hence, this also upper

bounds the total number of partitions of G satisfying (a) and (b). Since n ⩽ 16·µ(G)/ε and ε < 1/2, the

bound on the number of partitions is at most 216µ/ε·logn (by assumption), taking a union bound over

all the partitions, we know that the with probability at least 1− exp (−µ(G)·logn/ε), in Gs, we have no

partition P = {U,O1, · · · , Ot, E1, · · · , Eq} satisfying (a) and (b). Thus, by Lemma 26, we have that with

high probability, µ(Gs) ⩾ µ(G, κ)− ε · µ(G).

6.2 Phase 2 of M-or-E*()

The algorithm proceeds to Phase 2 only if the integral matching Ms found in Gs is close to µ(G, κ).

Recall that our goal is to compute a fractional matching so that we can apply the congestion balancing

framework. However, as mentioned before there is no straightforward way of computing a maximum

fractional matching in a general graph obeying capacity κ. To overcome this, we give a candidate fractional

matching which is easy to compute, and is sufficient for our purposes (that is, it avoids the integrality

gap). At a high level, this is what Phase 2 does, and in this section we describe our candidate fractional

matching and show that it is close in value to µ(Gs) with high probability, and therefore it is close to

µ(G, κ) as well (by Lemma 29).

6.2.1 Preliminaries for Phase 2

Phase 2 starts by computing Ms = Static-Match(Gs, ε) and then uses Ms to compute the desired

fractional matching. We will split Ms into low capacity edges and high capacity edges, and as a result

split V into vertices matched using high capacity edges, and low capacity edges. We begin by giving a

formal definition of low capacity edges.

Definition 32. Let G be any multigraph, and let κ be a capacity function on the edges of G. Let

ε ∈ (0, 1/2). Define EL(G, κ) = {e ∈ E | e ∈ D(u, v) and κ(D(u, v)) ⩽ 1/α2
ε}. Intuitively, EL(G, κ) is the

set of low total capacity edges.

As mentioned in the high-level overview, in order to prove our probabilistic claims, we will give some

slack to the capacities. This motivates our next definition.

Definition 33. Let G be a multi-graph, and let κ be a capacity function on the edges of G. Let ε ∈ (0, 1/2).

We define the capacity function κ+ as follows.

(a) For all e ∈ EL(G, κ), κ+(e) = κ(e) · αε.

(b) For all e ∈ E \ EL(G, κ), κ+(e) = κ(e).

To make our analysis easier to follow, we need the following definition of a bipartite double cover of G.

Definition 34. Let G be a multi-graph and let κ be a capacity function on the edges of G. We define

the bipartite double cover bc(G) to be a bipartite graph with capacity function κbc as follows.

(a) For every vertex v ∈ V (G), make two copies v and v′ in V (bc(G)).

(b) If e is an edge between u, v ∈ V (G), then for each such e we add two edges e′ and e′′, one between

u and v′ and the other between v and u′. We let κbc(e
′) = κbc(e

′′) = κ(e).
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We have the following standard claim relating µ(G) and µ(bc(G)).

Claim 35. For any multi-graph G, µ(bc(G)) ⩾ 2 · µ(G).

Next, we state the following lemma, which follows from standard techniques, and we give a formal

proof of it in Appendix A. The lemma essentially states that a fractional matching which has low flow on

all edges has a very small integrality gap.

Lemma 36. Let G be a multigraph, and let ε ∈ (0, 1). Let κ be a capacity function on the edges of

G, with κ(D(e)) ⩽ 1/αε for all e ∈ E(G). Then, µ(bc(G), κbc) ⩽ 2 · (1 + ε) · µ(G, κ), where µ(G, κ) is

the maximum fractional matching of G obeying κ and the odd set constraints, and µ(bc(G), κbc) is the

maximum fractional matching of bc(G) obeying κbc.

Additionally, we will need the following version of Hall’s theorem, which follows as a corollary of

Lemma 26.

Proposition 37 (Extended Hall’s Theorem). Let G = (L∪R,E) be a bipartite graph with n = |L| = |R|,
then µ(G) = n−maxS⊆L (|S| − |NG(S)|), where NG(S) refers to the neighbourhood of S in G.

In order to prove Lemma 40, we will use the following version of Chernoff bound.

Lemma 38 (Chernoff Bound). Let X1, · · · , Xk be negtively correlated random variables, and let X denote

their sum, and let µ = E [X]. Suppose µmin ⩽ µ ⩽ µmax, then for all δ > 0, Pr (X ⩾ (1 + δ)µmax) ⩽(
eδ

(1+δ)δ

)µmax

.

Additionally, we state the following observation, we refer the readers to [BGS20] for a proof of this

observation. The proof follows from a standard application of the max-flow min-cut theorem, and we refer

the reader to [BGS20] for a proof sketch.

Observation 39. Let G be any bipartite multigraph, with vertex bipartitions S and T . Let κ be the

capacity function on the edges of the graph. Then, for any C ⊆ S, and D ⊆ T , we have, |S| − |C|+ |D|+
κ(C, T \D) ⩾ µ(G, κ). Moreover, there are sets C ⊆ S and D ⊆ T such that equality holds.

6.2.2 Main Result for Phase 2

We briefly give some intuition about the statement of our claim. Recall in the high level review, we

mentioned that M , the integral matching of Gs can split into two parts MH , which is the high capacity

part, and ML, the low capacity part, and we defined VH = V (MH) and VL = V (ML). We said that

congestion balancing allows us to give slack to capacities, and therefore, we can round up the capacities of

MH to 1. However, we still want to compute a fractional matching G[VL]. In order to do this, we observe

that if the fractional matching in G[VL] is only on low capacity edges, then we can use flow algorithms to

compute such a matching. Therefore, our main structural result for Phase 2 states that if y⃗ is a fractional

matching on the low capacity edges of G[VL], then with high probability
∑

e∈E y(e) ⩾ |ML| − ε · µ(G).

We now state this result formally.

Lemma 40. Let G be a multigraph and let ε ∈ (0, 1/2) and suppose µ(G) ⩾ ε·n/16. Let κ be a capacity

function on the edges, and let Gs be the graph obtained from G by sampling each edge e with probability

p(e) = κ(e) · ρε. Let EL := EL(G, κ). Then, for all W ⊆ V , we have, with high probability,

µ(bc (Gs[W ] ∩ EL)) ⩽ µ(bc (G[W ] ∩ EL) , κ
+
bc) + εµ(G).

Remark 41. Note that by definition of EL, all edges e ∈ G[W ] ∩ EL have κ(e) ⩽ 1/α2
ε. Thus, κ

+
bc(e) =

κbc(e) · αε for all e ∈ bc(G[W ] ∩ EL).

Before we prove it, we have the following statement as a corollary of Lemma 40.

Corollary 42. Let G be a multi-graph, and let ε ∈ (0, 1). Let κ be a capacity function on the edges

of G with κ(e) ⩽ 1/αε for all e ∈ E(G). Then, with high probability, for all W ⊆ V , µ(Gs[W ] ∩ EL) ⩽
µ(G[W ] ∩ EL, κ

+) + 2εµ(G).
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Figure 2: In the left panel, we consider the graph G, and W = {a, b, c, d, e}. The red edges correspond

to the low capacity edges of G[W ], denoted G[W ] ∩ EL. On the right panel, we have the bipartite graph

bc(G[W ] ∩ EL), which has bipartitions W1 and W2. The solid red edges are the edges going between C

and D̄, and these edges have capacity κ(C, D̄).

Proof. The inequality in the statement follows due to the following line of reasoning.

2 · µ(Gs[W ] ∩ EL) ⩽ µ(bc (Gs[W ] ∩ EL))

(since 2 · µ(H) ⩽ µ(bc(H)), see Claim 35)

⩽ µ(bc(G[W ] ∩ EL), κ
+
bc) + εµ(G)

(by Lemma 40)

⩽ 2 · (1 + ε) · µ(G[W ] ∩ EL, κ
+) + εµ(G)

(by Lemma 36)

⩽ 2 · µ(G[W ] ∩ EL, κ
+) + 3εµ(G).

The last inequality follows from the fact that any fractional matching in G obeying κ+ and odd set

constraints is upper bounded by µ(G) (by Lemma 27). Dividing by two on both sides, we have our

claim.

Proof of Lemma 40. Consider a fixed W ⊆ V . From now, we will use H to denote bc(G[W ] ∩ EL)

and let Hs denote bc(Gs[W ] ∩ EL). For the bipartite graph H, we will use W1 and W2 to denote

the two bipartitions of H corresponding to W (see Figure 2 for an illustration). We now want to

prove that µ(Hs) ⩽ µ(H,κ+
bc) + εµ(G). To prove this, it is sufficient to show a set C ⊆ W1 such that

|C| − |NHs
(C)| ⩾ |W1| − µ(H,κ+

bc)− εµ(G) with high probability. Then, by Proposition 37, we have the

following inequality.

|W1| − µ(H,κ+
bc)− εµ(G) ⩽ |C| − |NHs(C)| ⩽ |W1| − µ(Hs).

This would prove our claim. Towards this, we consider the set C ⊆W satisfying the following equation

(applying Observation 39 to H with κ+
bc on edges), and show that this is the required set.

|W1| − |C|+ |D|+ κ+
bc(C,W2 \D) = µ(H,κ+

bc). (1)

We want to show that |C| − |NHs(C)| ⩾ |W1| − µ(H,κ+
bc)− εµ(G) with high probability. Let L be the set

of vertices in NHs
(C) ∩W2 \D. We know that |NHs

(C)| ⩽ |D|+ |L|.

Let EH(C,W2 \ D) be the set of edges in H between C and W2 \ D. Let X be the random vari-

able that denotes the number of edges in EH(C,W2 \D) that are sampled in Hs. Note that X is not a

sum of independent random variables. Recall that H is a subgraph of bc(G), and suppose e ∈ G[W ]∩EL

is included in Gs, then e′ and e′′ (recall e′ and e′′ are copies of e in bc(G)) are both included in Hs else

both are excluded. Thus, the random variables associated with e′ and e′′ are correlated with each other.
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We instead consider an arbitrary subset of E∗
H(C,W2 \D) of EH(C,W2 \D) that satisfies the following

properties.

(a) For e ∈ G[W ], if {e′, e′′} ⊂ EH(C,W2 \D), then exactly one of e′ or e′′ is included in E∗
H(C,W2 \D).

(b) For e ∈ G[W ], if {e′, e′′} ∩ EH(C,W2 \D) = {e′}, then only e′ is included in E∗
H(C,W2 \D).

(c) For e ∈ G[W ], if {e′, e′′} ∩ EH(C,W2 \D) = {e′′}, then only e′′ is included in E∗
H(C,W2 \D).

We consider the random variable Y that denotes the number of edges in E∗
H(C,W2 \ D) that are

included in Hs. Observe that Y is a sum of independent random variables satisfying the condition of

Lemma 38. Moreover, X ⩽ 2Y . Thus, it is sufficient to upper bound the value Y can take with high

probability. Note that for any e ∈ EH(C,W2 \D), using the definition of H, κbc(e) < 1/α2
ε. Since ρε < αε,

p(e) = ρε · κbc(e) < 1. So, we have,

E [Y ] ⩽
∑

e∈E∗
H(C,W2\D)

p(e) ⩽ ρε · κbc(C,W2 \D) ⩽
κ+
bc(C,W2 \D)

216/ε2
.

The last inequality follows from the fact that in H, κ+
bc(e) = κbc(e) · αε for all e ∈ H. By definition of H

and Definition 33, for all edges e ∈ H, the corresponding original edge in G is in EL(G, κ). We want to

bound the following probability.

Pr

(
Y ⩾

κ+
bc(C,W2 \D)

216/ε2
+ 4 · εµ(G)

)
Applying Lemma 38 with δ = 4·εµ(G)·216/ε

2

κ+
bc(C,W2\D)

, we have,

Pr

(
Y ⩾

κ+
bc(C,W2 \D)

216/ε2
+ 4 · εµ(G)

)
= exp

(
εµ(G)− εµ(G) log

(
1 +

4 · εµ(G) · 216/ε2

κ+
bc(C,W2 \D)

))
(Since κ+

bc(C,W2 \D) ⩽ 4 · µ(G) as proved below.)

⩽ exp
(
εµ(G)− εµ(G) log

(
1 + ε · 216/ε2

))
(From Equation (1), we have κ+

bc(C,W2 \D) ⩽ 4 · µ(G))

⩽ exp
(
εµ(G)− εµ(G) log

(
1 + 2

16/ε2
))

(Using the fact that 2
1/ε2 ⩾ 1/ε)

= exp (εµ(G)− 16µ(G)/ε) .

(Using the fact that 2
16/ε2 ⩽ 2

16/ε2 + 1)

To see why κ+
bc(C,W2 \D) ⩽ 4 · µ(G), consider Equation (1),

κ+
bc(C,W2 \D) = µ(H,κ+

bc)− |W1|+ |C| − |D|
⩽ 2 · (1 + ε) · µ(G[W ] ∩ EL(G, κ), κ+

bc)− |W1|+ |W1|
(Using Lemma 36, the fact that H = bc(G[W ] ∩ EL(G, κ)), and κ+ satisfies the hypothesis.)

⩽ 4 · µ(G).

Taking a union bound over all W , which are at most 216·µ(G)/ε many, we have our bound (this is because

by statement of the lemma, µ(G) ⩾ ε·n/16).

6.3 Phase 3: Finding set E∗

The algorithm M-or-E*() proceeds to Phase 3 if the matching found in Gs in Phase 1 is small, and

hence µ(G, κ) is too small. In this case, we need to find a set E∗ satisfying the properties of Lemma 9.

In particular, we need to find a set E∗ with κ(E∗) = O(µ(G) log n) such that for every large matching

M , there are a lot of edges going through E∗. In order to do this, we rely on the properties of the dual

variables associated with the matching problem. The algorithm Static-Match(), luckily for us, solves

both the primal as well as the dual solution. We first begin by stating the Dual Matching Program, and

then we state the properties of dual variables guaranteed by Static-Match().
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Dual Matching Program The dual of the maximum cardinality matching linear program is the

following (see [Sch03]).

minimize
∑
v∈V

y(u) +
∑

B⊆Vodd

|B| − 1

2
z(B)

subject to yz(e) ⩾ 1, e ∈ E(G),

y(u) ⩾ 0 ∀u ∈ U,

z(B) ⩾ 0 ∀B ⊆ Vodd

where,

(a) We define yz((u, v)) := y(u) + y(v) +
∑

B∈Vodd,
(u,v)∈G[B]

z(B) and,

(b) We define f(y, z) :=
∑

v∈V y(u) +
∑

B⊆Vodd

|B|−1
2 z(B).

We now describe some properties of the Static-Match(). We state them without proof for now, and

postpone the full proof to the Appendix C.

Lemma 43. There is an O(m/ε) time algorithm Static-Match() that takes as input a simple graph G

with m edges and a parameter ε > 0, and returns a matching M , and dual vectors y⃗ and z⃗ that have the

following properties.

(a) It returns an integral matching M such that |M | ⩾ (1− ε) · µ(G).

(b) A set Ω of laminar odd-sized sets, such that {B | z(B) > 0} ⊆ Ω.

(c) For all odd-sized B with |B| ⩾ 1/ε + 1, z(B) = 0.

(d) Each y(v) is a multiple of ε and z(B) is a multiple of ε.

(e) For every edge e ∈ E, yz(e) ⩾ 1− ε. We say that such an edge e is approximately covered by y⃗ and

z⃗.

(f) The value of the dual objective, f(y, z) is at most (1 + ε) · µ(G).

6.3.1 Main Guarantees of Phase 3

We now state the following helper lemma which will be instrumental in proving one of the two main

properties of E∗, namely, that every large matching has a lot of edges passing through E∗.

Lemma 44. Suppose G is a graph, and let H ⊂ G be a subgraph of G. Let y⃗, z⃗ be the dual variables

returned on execution of Static-Match() on H and ε. Let EH = {e ∈ G | yz(e) ⩾ 1− ε}. Let M be

any matching of G, then E \ EH contains at least |M | − (1 + ε)2 · µ(H) edges of M .

Proof. Suppose we scale up the dual variables y⃗ and z⃗ by a factor of 1 + ε. Then, y⃗ and z⃗ is a feasible

solution for the dual matching program for the graph EH . Thus, using weak duality, we have that

µ(EH) ⩽ (1 + ε)2 · µ(H) (this inequality follows from Lemma 43(f)). Suppose M is a matching of G, and

suppose E\EH contains fewer than |M |−(1+ε)2 ·µ(H) edges of M , and therefore, fewer than |M |−µ(EH)

edges of M , then this implies that |M | = |M ∩EH |+ |M ∩E \EH | < µ(EH)+ |M |−µ(EH) = |M |, which
is a contradiction. Thus, E \ EH contains at least |M | − µ(EH) ⩾ |M | − (1 + ε)2 · µ(H) edges of M .

We now state set E∗, and show that it has the property that κ(E∗) = O(µ(G) log n).

Lemma 45. Let G be a graph multi-graph such that µ(G) ⩾ ε·n/16, and let κ be a capacity function on

the edges of the graph. Suppose Gs is the graph obtained by sampling every edge e ∈ E with probability

p(e) = κ(e)·ρε. Let y⃗, z⃗ be the duals returned by Static-Match(Gs, ε). Let E
∗ = {e ∈ E | yz(e) < 1− ε}.

Then, with high probability, κ(E∗) = O(µ(G) log n).
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Proof. We consider the set D of assignments y⃗, z⃗ to the vertices and odd components that satisfy the

following properties.

(a) For all v ∈ V , y(v) is a multiple of ε, and for all B ⊂ V , z(B) is a multiple of ε.

(b) Let Ω = {B ⊂ V | z(B) > 0}, then Ω is laminar.

(c) If z(B) > 0 for some B ⊆ V , then |B| ⩽ 1/ε.

Observe that,

|D| ⩽
2n∑
i=0

(
n1/ε

i

)
·
(
1

ε

)n

·
(
1

ε

)2n

⩽ n ·
(
n1/ε

2n

)
·
(
1

ε

)n

·
(
1

ε

)2n

⩽ 2(
4/ε)·n logn

⩽ 2(
16/ε2)·µ(G) logn

(Since µ(G) ⩾ ε·n/16)

This number follows from the following argument. Since Ω is laminar, it can contain at most 2n sets.

Moreover, from (c), we deduce that these 2n sets are chosen from among n1/ε sets. Further, from (a), we

deduce that every vertex can be assigned at most 1/ε values, and every B ∈ Ω can be assigned 1/ε values.

Therefore, for a given choice of Ω, there are at most (1/ε)
n · (1/2ε)2n choices for y⃗ and z⃗. Moreover, the

above number also upper bounds the number of possible duals that can be a returned by the algorithm

Static-Match(), since the duals in D satisfy a subset of the properties satisfied by the duals returned by

Static-Match().

Now consider a fixed y⃗, z⃗ that satisfies the above-mentioned properties, and let E∗ be the set of edges

that are not approximately covered by y⃗, z⃗. Note that for any e ∈ E∗, κ(e) ⩽ 1/αε. If not, then, κ(e) = 1,

then it would be sampled in Gs with probability 1, and be approximately covered by y⃗, z⃗. Thus, for any

e ∈ E∗, p(e) = κ(e) · ρε. Now, suppose κ(E∗) > 17µ(G) log n. Then, observe that if y⃗, z⃗ is output by

Static-Match() (denote this event by Ey,z) then none of the edges in E∗ were sampled (denote this

event by E2). Thus, we have,

Pr (Ey,z) ⩽ Pr (E2) ⩽
∏
e∈E∗

(1− p(e)) ⩽ exp

(
−
∑
e∈E∗

κ(e) · ρε

)
⩽ exp

(
−17 · 21/ε2 · µ(G) log n

)

Now, observe that if we are able to upper bound Pr

( ⋃
y⃗,z⃗∈D

Ey,z

)
, then our lemma follows. This upper

bound follows by taking a union bound over the set D.

Pr

 ⋃
y⃗,z⃗∈D

Ey,z

 ⩽ exp
(
−17 · 21/ε2 · µ log n

)
· 2(16/ε2)·µ logn = O

(
exp

(
−21/ε2·µ logn

))

7 Algorithm M-or-E*()

In this section, we give the main subroutine M-or-E*() (see Lemma 9). We first define a few terms, and

state a known result about finding an approximate fractional matching.

Definition 46. Recall Definition 32, and consider an integral matching M , define EM
L (G, κ) = EL(G, κ)∩

M , and let V L
M be the endpoints of EM

L (G, κ).
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Lemma 47. Given a multigraph G (possibly non-bipartite), with edge capacities κ and ε ∈ (0, 1), such

that κ(D(e)) ⩽ 1/αε for all e ∈ E, then there is an algorithm Frac-Match() that takes as input G, κ and

ε, and returns a fractional matching x⃗ such that
∑

e∈E x(e) ⩾ (1− ε) · µ(G, κ), obeying the capacities κ

and the odd set constraints. The runtime of this algorithm is O(m·logn/ε).

Proof. For the case of bipartite graphs, there is an algorithm that takes as input a graph G, an edge

capacity function κ and ε ∈ (0, 1), and returns in O(m/ε) time, a (1 + ε)-approximate fractional matching

of G, obeying capacities κ (see [BGS20]). We use this algorithm for a non-bipartite graph as follows: we

run the algorithm on bc(G, κ), to obtain a matching x⃗. To get a fractional matching in G that obeys

κ, we do the following: let e ∈ E(G) and let e′, e′′ ∈ E(bc(G)) be copies of e. We let z(e) = x(e′)+x(e′′)
2 .

Then, the matching z⃗ obeys κ as well as the fractional matching constraints since x⃗ obeys them.

For the purpose of the algorithm recall, definition of κ+ in Definition 33 given κ and ε. We now

formalize the algorithm M-or-E*(). Recall that it takes as input a multigraph G with µ(G) ⩾ ε·n/16.

Algorithm 3 M-or-E*(G, κ, ε, µ)

1: Include each e ∈ E(G) independently with probability p(e) = κ(e) · ρε into graph Gs.

2: Let M and y⃗, z⃗ be the output of Static-Match(Gs, ε). ▷ Phase 1

3: if |M | < µ− 6εµ then ▷ Phase 3

4: Return E∗ = {e ∈ E(G) | κ(e) < 1 and yz(e) < 1− ε}.
5: else ▷ Phase 2

6: MI ←M \ EL(G, κ)

7: y⃗ ←MD
I ▷ Converting MI into a matching on a multigraph.

8: x⃗← Frac-Match(G[V M
L ] ∩ EL(G, κ), κ+, ε)

9: end if

10: Return y⃗ + x⃗.

We now show Lemma 9 holds, we first restate it.

Lemma 9. Let G be a multi-graph with µ(G) ⩾ ε·n/16. Let κ be a capacity function on the edges of G.

There is an algorithm M-or-E*(), that takes as input G, κ, ε ∈ (0, 1/2) and µ ⩾ (1− ε) · µ(G) and in time

O(m·logn/ε) returns one of the following.

(a) A fractional matching x⃗ of value at least (1− 10ε) · µ with the following properties.

(i) For any e ∈ supp(x⃗) with κ(D(e)) > 1/α2
ε, x(e) =

κ(e)
κ(D(e)) , and x(D(e)) = 1.

(ii) For any e ∈ supp(x⃗) with κ(D(e)) ⩽ 1/α2
ε, x(e) ⩽ κ(e) · αε and x(D(e)) ⩽ κ(D(e)) · αε.

(b) A set E∗ of edges such that κ(E∗) = O(µ log n) such that for any integral matching M with

|M | ⩾ (1 − 3ε) · µ, we have |M ∩ E∗| ⩾ εµ. Moreover, κ(e) < 1 for all e ∈ E∗. Additionally, for

every pair of vertices u, v ∈ V , either D(u, v) ∩ E∗ = ∅ or D(u, v) ⊆ E∗.

Proof of Lemma 9. We first show the runtime of the algorithm. Graph Gs can be computed in time

O(m). Using Lemma 43, we conclude that we can compute E∗ in order O(m/ε) time by running Static-

Match(Gs, ε) and Lemma 47 implies that Line 8 takes O(m·logn/ε) time.

We show Lemma 9(a). First observe that V M
L and V (MI) are disjoint, and since y⃗ and x⃗ are frac-

tional matchings, z⃗ is also a fractional matching. Note that |M | ⩾ µ − 7εµ. Moreover,
∑

e∈E x(e) ⩾
(1− ε) · µ(G[V M

L ] ∩ EL, κ
+). This follows from applying Lemma 47 to G[V M

L ] ∩ EL(G, κ) with capacity

function κ+. Recall Definition 33 and Definition 32 to see that κ+(D(e)) ⩽ 1/αε for e ∈ G[V M
L ]∩EL(G, κ),

thus satisfying the requirements of Lemma 47. Next, applying Corollary 42, we have, µ(Gs[V
M
L ] ∩ EL) ⩽

µ(G[V M
L ] ∩ EL, κ

+) + 5 · εµ(G). Thus, we have
∑

e∈E x(e) ⩾ (1 − ε) ·
(
µ(Gs[V

M
L ] ∩ EL)− 5εµ

)
⩾

(1 − ε) · (|M \MI | − 5εµ). This is because M \MI is a matching of Gs[V
M
L ] ∩ EL. So,

∑
e∈E z(e) ⩾

|MI |+ (1− ε) · (|M \MI | − 5εµ) ⩾ (1− ε) · (µ− 12εµ) ⩾ µ− 13εµ.

We now show Lemma 9(a)(i) and (ii). Consider any edge e ∈ supp(z⃗) with κ(D(e)) ⩽ 1/α2
ε, e ∈
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G[V M
L ] ∩ EL(G, κ). Thus, e ∈ supp(x⃗), and therefore, from Lemma 47, z(e) = x(e) ⩽ κ+(e) ⩽ κ(e) · αε

and z(D(e)) = x(D(e)) ⩽ κ(D(e)) · αε. Similarly, for any e ∈ supp(z⃗) with κ(D(e)) > 1/α2
ε, e ∈ supp(y⃗).

By definition of y⃗, z(e) = y(e) = κ(e)/κ(D(e)) (recall Definition 7) and z(D(e)) = 1. This proves our claim.

Next, we show Lemma 9(b). First recall from the assumption of Lemma 9 that µ ⩾ (1 − ε) · µ(G).

From this fact and Lemma 45, we can conclude that κ(E∗) = O(µ log n) and that for all e ∈ E∗, κ(e) < 1.

Next, observe that µ(Gs) ⩽ (1 + ε) · |M | ⩽ (1− 6ε) · µ. Applying Lemma 44 with H = Gs, we have, that

for any matching M ′ of G, |E∗ ∩M ′| ⩾ |M ′| − (1 + ε)2 · (1− 6ε) · µ. If |M ′| ⩾ (1− 3ε) · µ, then we have

|E∗ ∩M ′| ⩾ ε · µ. Finally, consider any pair of vertices u, v and let e′, e′′ ∈ D(u, v). Then, either both

e′, e′′ are both approximately covered by y⃗, z⃗ or neither of them are. This implies that either D(u, v) ⊆ E∗

or D(u, v) ∩ E∗ = ∅.

A Missing Proofs

We start by giving a formal proof of the following lemma.

Lemma 36. Let G be a multigraph, and let ε ∈ (0, 1). Let κ be a capacity function on the edges of

G, with κ(D(e)) ⩽ 1/αε for all e ∈ E(G). Then, µ(bc(G), κbc) ⩽ 2 · (1 + ε) · µ(G, κ), where µ(G, κ) is

the maximum fractional matching of G obeying κ and the odd set constraints, and µ(bc(G), κbc) is the

maximum fractional matching of bc(G) obeying κbc.

To prove the above lemma, we state the following observation.

Observation 48. Suppose a fractional matching x⃗ of G satisfies the odd set constraints for all odd sets

of size smaller than 3/ε + 1, then, the fractional matching z⃗ = x⃗
1+ε satisfies all odd set constraints.

Proof. Suppose x⃗ is a fractional matching of G that satisfies odd set constraints for all odd sets of size

smaller than 3/ε + 1. Let z⃗ be a fractional matching obtained by scaling down x⃗ by 1 + ε. Now, consider

any odd set B with |B| ⩽ 3/ε, then x⃗, and therefore z⃗ satisfies the odd set constraint corresponding to

this. So, we consider B such that |B| ⩾ 3/ε + 1, then,

|B|
|B| − 1

= 1 +
1

|B| − 1
⩽ 1 + ε/3

The last inequality follows because of the fact that |B| − 1 ⩾ 3/ε. Since x⃗ satisfies the fractional matching

constraints, this implies:
∑

e∈G[B] x(e) ⩽
|B|
2 . Thus, we have,

∑
e∈G[B] z(e) ⩽

∑
e∈G[B]

x(e)
1+ε ⩽ |B|

2·(1+ε) . By

the above argument, this is upper bounded by |B|−1
2 . Thus, z⃗ satisfies all fractional matching constraints

as well as the odd set constraints.

We now state the following lemma.

Proof of Lemma 36. Consider the maximum fractional matching x⃗ of bc(G, κ), that obeys the capacity

constraints κ. Let z⃗ be a fractional matching of (G, κ) that is obtained from x⃗ as follows. Let e ∈ E(G),

and let e′, e′′ be copies of e in bc(G, κ). Then, we let z(e) = x(e′)+x(e′′)
2 . Note that z⃗ obeys fractional

matching constraints, since x⃗ does. Additionally, observe that z(e) ⩽ κ(e). Thus, for any odd set B ⊂ V

with |B| ⩽ 3/ε, we have, ∑
e∈G[B]

z(e) =
∑

u,v∈B

z(D(u, v))

⩽
∑

u,v∈B

κ(D(u, v))

⩽ 1/αε

(Since κ(D(e)) ⩽ 1/αε)

⩽
∑

u,v∈B

ε/3
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(Since 1/αε ⩽ ε/3 for ε < 1/2)

⩽
ε

3
· |B| · (|B| − 1)

2

⩽
|B| − 1

2

(Since |B| ⩽ 3/ε)

Thus, z⃗ satisfies the small odd set constraints, and we know from Observation 48 that y⃗ = z⃗
1+ε satisfies all

odd set constraints in addition to the fractional matching constraints. Thus, we have, (1+ε)·
∑

e∈E(G) y(e) =∑
e∈E(G) z(e) = 0.5

∑
e∈bc(G) x(e). Thus, if x⃗ is the optimal fractional matching of bc(G), then we have,

µ(G, κ) · (1 + ε) ⩾ (1 + ε) ·
∑

e∈E(G)

y(e)

= 0.5
∑

e∈bc(G)

x(e)

(From the discussion above)

= 0.5 · µ(bc(G), κ)

(Since x⃗ is the maximum fractional matching of (G, κ))

This proves our claim.

B Reduction from Simple to Multigraphs

In this section, we will prove the following lemma.

Lemma 3. [AKL19] Let δ ∈ (0, 1) and let G be a graph with maximum matching size at least µ and

at most (1 + δ) · µ. There is an algorithm Vertex-Red(G,µ, δ) that takes as input G, µ, and δ, and

in O(m · logn/δ4) time returns λ = 100·logn
δ4 multi-graphs H1, · · · , Hλ that have the following properties,

where the second property holds with probability at least 1− exp (−µ·logn/δ4).

(a) For all i ∈ [λ], |V (Hi)| = 4·(1+δ)·µ
δ and E(Hi) ⊆ E(G).

(b) Suppose G is subject to deletions, which we simulate on each of the Hi’s. More concretely, if an

edge e is deleted from G, then its copy in each of the Hi’s (if present) is also deleted. Suppose at

the end of the deletion process, µ(G) ⩾ µ̃ for some µ̃ ⩾ (1− 2δ) · µ. Then, µ(Hi) ⩾ (1− δ) · µ̃ for

some i ∈ [λ].

In order to do that, we first start by proving the following simple observation.

Observation 49. Let G be any simple graph with maximum matching size µ(G), then G contains at

most 2O(µ(G)·logn) matchings of any size.

Proof. Since the total number of edges is at most n2, there are at most
(
n2

j

)
ways of choosing a matching

of size j. Thus, we have, the total number of matchings possible is at most:

µ(G)∑
j=1

(
n2

j

)
⩽

µ(G)∑
j=1

22·j logn ⩽ µ(G) · 22·µ(G) logn ⩽ 23·µ(G) logn

This proves our claim.

Now, in order to prove Lemma 3, we first give a procedure that takes as input a simple graph, and

outputs a multigraph with O(µ(G)/ε) vertices that preserves a fixed matching M of G approximately with

probability 1− exp
(
−O

(
|M | · ε3

))
.
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Algorithm 4 Vertex-Red-Basic(G, τ, ε)

Input: Graph G, a sparsification parameter τ , and a parameter ε > 0

Output: A multigraph G(V, E) with |V| = τ

1: Partition V into τ bins, V := (B1, B2 · · · , Bτ ), by assigning every vertex to one of the τ bins uniformly

at random.

2: For a vertex u, let B(u) denote the bin chosen for u. For any edge (u, v) ∈ E, if B(u) ̸= B(v), then

add an edge eu,v between B(u) and B(v).

3: Return the multigraph G(V, E).

Lemma 50. LetG be a simple graph, let ε ∈ (0, 1), and let τ ⩾ 4·µ(G)
ε . Let G = Vertex-Red-Basic(G, τ, ε),

and let M be any fixed matching of G. Then with probability 1− 2−
|M|·ε3

32 , there exists a matchingM in

G such that ifM⊂M , and |M| ⩾ (1− ε) · |M |.

Proof. Let δ = ε/4, and we define t := 2|M |. Since ε < 1, this implies that δ < 1/2. Recall that we have

τ = 4µ(G)
ε bins, and we combine these bins arbitrarily so that we end up with t

δ groups. Call these groups

Z1, · · · , Zt/δ. Note that every vertex v lands in bin Zi with probability δ/t. Call a group Zi bad if it

doesn’t contain even one of the 2|M | vertices of M . Associate a random variable Xi with Zi that takes

value 1 if Zi is bad, and zero otherwise. Let X =
∑t/δ

i=1 Xi denote the number of bad groups. We have,

Pr (Xi = 1) =

(
1− δ

t

)t

= e−δ ⩽ 1− δ + δ2/2

Thus, we have, E [X] ⩽ t/δ
(
1− δ + δ2/2

)
. Note that X is a sum of negatively correlated variables. This

is because if Zi is empty, then Zj has an increased likelihood of being not empty for i ̸= j. So, using

Lemma 38, we have,

Pr

(
X ⩾

(
1 + δ2

)
· t
δ
·
(
1− δ + δ2/2

))
⩽ exp

(
−δ4 · t

δ
·
(
1− δ +

δ2

2

))
⩽ exp

(
−δ3 · t+ δ4 · t

)
⩽ exp

(
−δ3

2
· t
)

(Since δ <
1

2
)

Thus, with probability at least 1−2−
|M|·ε3

128 , X ⩽
(
t
δ − t+ 2δt

)
. Thus, with probability at least 1−2−

|M|·ε3
128 ,

we have that t− 2δ · t groups are good, which means that they contain at least one vertex of M . Now, we

need to show that if at least t− 2δ · t bins are good, then the edges of M form a matchingM of G such

that |M| ⩾ |M | · (1− ε). For every bin, we fix one vertex of M , and remove the rest. Since t− 2δ · t of the
bins are good, this implies that we lost at most 2δ · t vertices of the matching M . Consequently, we deleted

at most 2δ · t edges of M . The remaining edges have their endpoints in different bins, and therefore, they

form a matching in G. The size of this matching is |M | − 2δ · t, which is equal to |M | − ε|M |. Thus, we
have our claim.

Lemma 51. Let Vertex-Red() be an algorithm that does independent runs of Vertex-Red-Basic().

Let H1, H2 · · · , Hλ be multigraphs on independent runs of Vertex-Red-Basic() on input G, τ ⩾ 4·µ(G)
ε

and ε ∈ (0, 1/2), for λ ⩾ 1600·logn
ε4(1−ε) . Then, with probability at least 1 − exp(−O(µ(G)·logn/ε)), for every

matching M with |M | ⩾ (1 − ε) · µ(G), there is a matching M ′ in some Hi such that M ′ ⊂ M , and

|M ′| ⩾ (1− ε)|M |.

Proof. Consider a fixed matching M , of size at least (1 − ε) · µ(G), then with probability at least

1− exp
(
−µ(G)·(1−ε)·ε3

128

)
, a fixed Hi contains a matching M ′ ⊂M with |M ′| ⩾ (1− ε)|M |. This is implied

by Lemma 50. Since each of the Hj ’s are independent runs of Vertex-Red(), with probability at least

1− exp
(
− 12·µ(G)·logn

ε

)
, some Hi contains a matching M ′ ⊂M with |M ′| ⩾ (1− ε)|M |. Taking a union

bound over all possible matchings of size at least (1− ε) · µ(G), from Observation 49, we have that with

25



probability at least 1− exp
(
− 9·µ(G)·logn

ε

)
, for every matching M with |M | ⩾ (1− ε) · µ(G), there is a

matching M ′ in some Hi such that M ′ ⊂M and |M ′| ⩾ (1− ε) · |M |.

We now show the following.

Lemma 52. Let G be a simple graph, and let H1, · · · , Hλ be the output of independent runs of Static-

Match() with G and ε as input, where λ ⩾ 1600·logn
ε4·(1−ε) . Consider an adversary that deletes edges from

G. We simulate this deletion process in Hi’s, that is, if (u, v) is deleted from G, then eu,v (if present) is

deleted from each of the Hi’s. Let µ
t
i denote the size of the maximum matching of Hi after t deletions, and

similarly, let µt denote the size of the maximum matching of G after t deletions. Suppose µt > (1− ε)µ0,

then, µt
i > (1− 2ε)µ0 for some i ∈ [λ].

Proof. Let M be a matching in G satisfying the statement of the lemma. That is, suppose at time t,

|M | > (1 − ε)µ0. Since the adversary is only performing deletions, |M | > (1 − ε)µ0 initially, when no

deletions had been performed. So, by Lemma 51, before any deletions are performed, there is a matching

M ′ in one of the Hi’s such that M ′ ⊂ M , and |M ′| ⩾ (1 − ε) · |M | > (1 − 2ε + ε2)µ0. Since all of the

edges of M survive at time t, this is true of M ′ as well. Thus, µt
i > (1 − 2ε)µ0 for some i ∈ [λ]. This

proves our claim.

We now show that Lemma 3 follows from the lemmas proved in this section.

Proof of Lemma 3. Consider Lemma 3(a). This is implied by the properties of Vertex-Red(), Lemma 51,

and Lemma 50. Property Lemma 3(b) is on the other hand implied by the contrapositive of Lemma 52.

C Properties of Static-Match()

In this section we will show Lemma 43, which we first restate.

Lemma 43. There is an O(m/ε) time algorithm Static-Match() that takes as input a simple graph G

with m edges and a parameter ε > 0, and returns a matching M , and dual vectors y⃗ and z⃗ that have the

following properties.

(a) It returns an integral matching M such that |M | ⩾ (1− ε) · µ(G).

(b) A set Ω of laminar odd-sized sets, such that {B | z(B) > 0} ⊆ Ω.

(c) For all odd-sized B with |B| ⩾ 1/ε + 1, z(B) = 0.

(d) Each y(v) is a multiple of ε and z(B) is a multiple of ε.

(e) For every edge e ∈ E, yz(e) ⩾ 1− ε. We say that such an edge e is approximately covered by y⃗ and

z⃗.

(f) The value of the dual objective, f(y, z) is at most (1 + ε) · µ(G).

We first note that the properties (a)-(b) and (d)-(f) are evident in Property 3.1 and the proof of

Lemma 2.3 of [DP14]. We now show that (c) also holds.

Proof of Lemma 43. Let Basic-Static-Match() be the algorithm satisfying of [DP14] satisfying (a)-(b)

and (d)-(f). We now show how to obtain Static-Match() from Basic-Static-Match(). We run Basic-

Static-Match() with input G and δ = ε/3. Thus, we get a matching M of size at least (1− ε/3) · µ(G).

Moreover, the duals y⃗ and z⃗ output by the algorithm have yz(V ) ⩽ (1 + ε/3) · µ(G). We consider the

following procedure: for every B ∈ Ω with z(B) > 0 and |B| ⩾ 3
ε + 1, we increase y(v) by z(B)/2 for every

v ∈ B, and we decrease z(B) to 0. Thus, each y(v) is still a multiple of ε and each z(B) is still a multiple

of ε. We conclude that (d) still holds. Moreover, this transformation keeps the value of the dual constraint

for every edge the same. Thus, we still satisfy (e). We update Ω by removing B from it. The set Ω still

remains laminar. Thus, (b) is still satisfied. We first observe that the time taken to do this is linear in the

sum of the sizes of the odd sets B with z(B) > 0. Note that since yz(V ) sums to at most (1 + ε/3)µ(G),
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and non-zero z(B) have value at least ε/3, this implies that the sums of the sizes of the odd sets is at most
3/ε · (1 + ε/3) · µ(G). Thus, the time taken for the procedure is O(m/ε). Next, we observe that the value of

yz(V ) changes by at most
∑

B:|B|⩾3/ε+1
z(B)
2 . This value is at most ε/3 · (1 + ε/3) · µ(G), as shown by the

following calculation.

(
3

ε

)
·

∑
B:|B|⩾3/ε+1

z(B)

2
⩽

∑
B:|B|⩾3/ε+1

(
|B| − 1

2

)
· z(B) ⩽ (1 + ε/3) · µ(G)

Thus, the new yz(V ) has value at most (1 + ε/3)2 · µ(G). This implies that (f) holds. Finally, since

every blossom B of size at least 3/ε + 1 has z(B) = 0, thus, (c) holds.

D Rounding Fractional Matchings

In this section, we will prove Lemma 15. More concretely, we give state the procedure Sparsification()

that takes as input a fractional matching x⃗ of a simple graph G, and outputs a graph H, of size Õ(µ(G)).

If x(e) ⩽ ε6 for all e ∈ E(G), then, H contains an integral matching of size at least (1− 10ε) ·
∑

e∈E x(e)

in its support. The proof of this theorem is implicit in the work of [Waj20], but we describe it here for

completeness. We first state the algorithm, and then describe some of its properties. The algorithm uses

a dynamic edge coloring algorithm as a subroutine. The update time of the subroutine is O(log n) in the

worst case. The sparsification algorithm takes as input a fractional matching x⃗ and a parameter ε > 0.

Then, it classifies E(G) into classes as follows: Ei =
{
e | x(e) ∈ [(1 + ε)−i, (1 + ε)−i+1)

}
. Note that we

only consider edges e ∈ E(G) with x(e) ⩾ (ε/n)
2
, since the total contribution of these edges to fractional

matching is at most ε2, and we can afford to ignore them if we want to compute a (1 + ε) approximation.

We now state the algorithm.

Algorithm 5 Sparsification(x⃗, ε)

1: d← 4·log(2/ε)
ε2

2: for i ∈
{
1, 2, · · · , 2 log1+ε(n/ε)

}
do

3: Compute a 3⌈(1 + ε)i⌉-edge colouring Φi of Ei.

4: Let Si be a sample of 3 ·min
{
⌈d⌉, ⌈(1 + ε)i⌉

}
colours without replacement in Φi.

5: Return K = (V,∪i ∪M∈Si
M)

6: end for

We state the guarantees of the edge coloring subroutine.

Observation 53. The size of K output by Sparsification(x⃗, ε) is,

|E(H)| = O

(
log(n/ε)

ε
· d · µ(supp(H))

)
Lemma 54. [BCHN18] There is a deterministic dynamic algorithm that maintains a 2∆− 1 edge coloring

of a graph G in O(log n) worst case update time, where ∆ is the maximum degree of the graph G.

Observation 55. Let ε ∈ (0, 1/2) and suppose the input to Sparsification(x⃗, ε) is a matching x⃗ with

x(e) ⩽ ε6, then, |Si| = 3 · ⌈d⌉.

To show that K contains a matching of size at least (1− ε) ·
∑

e∈E(G) x(e) in its support, we will show

a random fractional matching y⃗ in K that sends flow at most ε through each of its edges. Moreover,

E
[∑

e∈E y(e)
]
⩾ (1− 6ε) ·

∑
e∈E(G) x(e). This will show the existence of a large matching that sends flow

at most ε through each of its edges. To show this, we give some properties of the algorithm.

Lemma 56. Let ε ∈ (0, 1/2) and let x⃗ be the input to Sparsification(x⃗, ε) such that x(e) ⩽ ε6 for all

e ∈ E(G). Then, for every edge e, Pr (e ∈ K) ∈ [x(e)·d/(1+ε)2, x(e) · d · (1 + ε)].
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Proof. Since x⃗ has the property that for every e ∈ E, x(e) ⩽ ε6, this implies that we sample 3 · ⌈d⌉ from
Φi colors for each i (from Observation 55). Thus, if we consider an edge e ∈ Ei, then, we have,

Pr (e ∈ K) =
⌈d⌉

⌈(1 + ε)i⌉
⩽

d · (1 + ε)

(1 + ε)i
⩽ d · (1 + ε) · x(e)

The last inequality follows from the fact that x(e) ∈
[
(1 + ε)−i, (1 + ε)−i+1

]
. Moreover, we have,

⌈d⌉
⌈(1 + ε)i⌉

⩾
d

(1 + ε)i + 1
⩾

d

(1 + ε)i+1
⩾

d · x(e)
(1 + ε)2

The first inequality follows from the fact that ⌈d⌉ ⩾ d, and ⌈(1+ ε)i⌉ ⩽ (1+ ε)i +1. The second inequality

follows from the following reasoning.

(1 + ε)−i ⩽ x(e) ⩽ ε6 ⩽ 1/d ⩽ ε

Thus, 1/ε ⩽ (1 + ε)i, and 1 ⩽ ε · (1 + ε)i, so the second inequality follows. The last inequality follows from

the fact that x(e) ∈
[
(1 + ε)−i, (1 + ε)−i+1

]
.

For an edge e ∈ E(G), we define Xe to be an indicator random variable that takes value 1 if e ∈ K,

and 0 otherwise.

Observation 57. For a vertex v, the variables {Xe | e incident on v} are negatively associated.

Proof. If the edges e and e′ incident on v belong in Ei and Ej where i ≠ j, then Xe and Xe′ are

independent. On the other hand, if they belong in the same Ei, then recall we did an edge colouring

on Ei, so e′ and e got different colours. So, if the colour corresponding to e is picked into K, then this

reduces the probability of the colour corresponding to e′ being picked into K.

Lemma 58. From Observation 57 and Lemma 56, we can conclude that for edges e and e′ incident on v,

Pr (Xe = 1 | Xe′ = 1) ⩽ Pr (Xe = 1) ⩽ x(e) · d · (1 + ε)

Lemma 59. For any vertex v and edge e′ incident on v, the variables {[Xe | Xe′ ] | e incident on v} are
negatively associated.

Lemma 60 (Concentration Bound). Let X be the sum of negatively associated random variables

X1, · · · , Xk with Xi ∈ [0,M ] for each i ∈ [k]. Then, for σ2 =
∑k

i=1 Var [Xi] and all a > 0,

Pr (X > E [X] + a) ⩽ exp

(
−a2

2 (σ2 + a·M/3)

)
Following theorem directly implies Lemma 15.

Theorem 61. Let K be the subgraph of G output by Sparsification(), when run on the matching x⃗

with parameters ε ∈ (0, 1/2). If x(e) ⩽ ε6 for all e ∈ E, then K supports a fractional matching y⃗ such that

y(e) ⩽ ε, and
∑

e∈E y(e) ⩾ (1− 6ε) ·
∑

e∈E x(e).

Proof. To show the theorem, we will describe a process that simulates Sparsification(x⃗, ε), and outputs a

random matching y⃗ such that y(e) ⩽ ε for every e ∈ E. Additionally, E
[∑

e∈E y(e)
]
≥ (1− 6ε)

∑
e∈E x(e).

As an intermediate step, let z(e) = (1−4ε)
d ·Xe. So, we have,

E [z(e)] ⩾ E [z(e) | Xe = 1] · Pr (Xe = 1) ⩾
1− 4ε

d
· x(e) · d
(1 + ε)2

⩾ (1− 6ε) · x(e)

The second to last inequality follows from Lemma 56. Next define y⃗ as follows:

y(e) =

{
0 if for one of the endpoints v of e,

∑
e′∈v z(e

′) > 1

z(e) otherwise.
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Essentially, our procedure is creating matching z⃗ as follows: it assigns value 1−4ε
d to z(e) if e was included

in K, and 0 otherwise. The value y(e) is the same z(e) in all cases except when e is picked into K, but at

one of the endpoints v,
∑

e′∋v z(e
′) > 1 , that is, the fractional matching constraint is violated at v. We

show that it is unlikely that an edge (when picked) has one of its endpoints violated. Let e′ be an edge

incident on v, we to bound the probability that z(e′) ̸= y(e′).

E

[∑
e∈v

z(e) | Xe′ = 1

]
⩽

1− 4ε

d
+ E

 ∑
e′ ̸=e,e∈v

z(e) | Xe′


⩽ ε+

∑
e∈v

x(e) · (1 + ε) · d ·
(
1− 4ε

d

)
(Since 1/d ⩽ ε and from Lemma 58)

⩽ (1− ε)

Note that at any end point of e′, conditioned on e′ being sampled, the expected sum of z(e)’s at that

endpoint is upper bounded by (1− ε). Now, z(e) is assigned value 0 only if the sum of the z(e)’s deviates

from the expected value by ε. To see this, we want to compute Var [[z(e) | Xe′ ]], where e and e′ share an

end point. Note that [z(e) | Xe′ ] takes value
1−4ε
d with probability Pr (Xe | Xe′), otherwise it takes value

0.

Var [[z(e) | Xe′ ]] ⩽ E
[
[z(e) | Xe′ ]

2
]

⩽

(
1− 4ε

d

)2

· Pr (Xe | Xe′)

⩽

(
1− 4ε

d

)2

· x(e) · d · (1 + ε)

(From Lemma 58)

⩽
x(e)

d

This implies that
∑

e∈v Var [[z(e) | Xe′ ]] ⩽ 1
d . So, we want to compute the probability that the sum of the

random variables {[z(e) | Xe′ ]} deviates from the expected value by ε. Applying Lemma 60, we have,

Pr

(∑
e∈v

[z(e) | Xe′ ] ⩾ E

[∑
e∈v

[z(e) | Xe′ ]

]
+ ε

)
⩽ exp

(
−ε2

2
(
1
d + ε

3·d
))

(Since z(e) ∈ [0, 1−4ε/d])

⩽ exp
(
−ε2 · 0.25 · d

)
(Since ε ∈ (0, 1))

⩽
ε

2

(Since d =
4 · log(2/ε)

ε2
)

Taking union bound over both endpoints, we know that Pr (y(e) = z(e) | Xe = 1) ⩾ (1 − ε). Thus, we

have:

E [y(e)] =

(
1− 4ε

d

)
· Pr (y(e) = z(e))

=

(
1− 4ε

d

)
· Pr (y(e) = z(e) | Xe = 1)Pr (Xe = 1)

⩾

(
1− 4ε

d

)
· (1− ε) · x(e) · d

(1 + ε)2

⩾ (1− 7ε) · x(e)

Thus, E
[∑

e∈E y(e)
]
⩾ (1−7ε) ·

∑
e∈E x(e). Moreover, for all e ∈ E, y(e) ⩽ ε6. This proves our claim.
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We now restate the lemma, and then show its proof.

Lemma 15. [Waj20] Suppose G is an unweighted simple graph, let ε ∈ (0, 1/2), and let x⃗ be a fractional

matching of G such that x(e) ⩽ ε6. Then, there is a dynamic algorithm Sparsification(x⃗, ε), that has

the following properties.

(a) The algorithm maintains a subgraph H ⊆ supp(x⃗) such that |E(H)| = Oε(µ(supp(x⃗)) · poly(log n)),
and with high probability µ(H) ⩾ (1− ε) ·

∑
e∈E x(e).

(b) The algorithm handles the following updates to x⃗: the adversary can either remove an edge from

supp(x⃗) or for any edge e, the adversary can reduce x(e) to some new value x(e) ⩾ 0.

(c) The algorithm handles the above-mentioned updates in Õε(1) worst-case time.

Proof. Note that (a) is implied by Theorem 61, and the fact that any fractional matching y⃗ with y(e) ⩽ ε

for all e ∈ E, satisfies odd set constraints for all odd sets of size at most 1/ε. To see (b), note that deleting

e from supp(x⃗) corresponds to just deleting e from Gi, and since our edge coloring algorithm is able to

handle edge insertions and deletions in Õε(1) time, such updates can be handled in Õε(1) update time

(see Lemma 54). Finally, if an update reduces x(e) for some e ∈ E, then this corresponds to deleting e

from some Gi and adding it to Gj for some j < i. Thus, the edge colouring algorithms running on Gi and

Gj have to handle an edge insertion and deletion respectively, and this can be done in Õε(1) time (see

Lemma 54).
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