
Online Matching with
Recourse: Random

Arrivals

Matching

Matching
• Given a graph G, with

vertex set V, and
edge set E, a
matching is a set of
pairwise non-adjacent
edges.

Matching
• Given a graph G, with

vertex set V, and
edge set E, a
matching is a set of
pairwise non-adjacent
edges.

Matching
• Given a graph G, with

vertex set V, and
edge set E, a
matching is a set of
pairwise non-adjacent
edges.

• Maximum matching is a
matching that contains
the largest possible
number of edges.

Matching
• Given a graph G, with

vertex set V, and
edge set E, a
matching is a set of
pairwise non-adjacent
edges.

• Maximum matching is a
matching that contains
the largest possible
number of edges.

Applications

Applications
• Ad-Allocation: Ad slots are allocated through

contracts. There are demand and supply
constraints that directly lead to the question
of finding an optimal matching between the
slots and advertisers.

Applications
• Ad-Allocation: Ad slots are allocated through

contracts. There are demand and supply
constraints that directly lead to the question
of finding an optimal matching between the
slots and advertisers.

• Job Scheduling: We have a set of servers with
different capabilities available to process jobs
from persistent sources - jobs that need to be
processed over long periods of time.

Bipartite Graphs

Bipartite Graphs

• A graph with vertex set
V and edge set E, is
called a bipartite graph
if V can be partitioned
into sets V1 and V2 such
that all the edges are
between vertices in V1

and V2 .

Bipartite Graphs

• A graph with vertex set
V and edge set E, is
called a bipartite graph
if V can be partitioned
into sets V1 and V2 such
that all the edges are
between vertices in V1

and V2 .

Bipartite Graphs

• A graph with vertex set
V and edge set E, is
called a bipartite graph
if V can be partitioned
into sets V1 and V2 such
that all the edges are
between vertices in V1

and V2 .

Online Model
• Typically, a bipartite graph

G=(U,V,E). The set U is
known to the algorithm.
Vertices in V arrive one at a
time, and reveal edges
incident on them.

• The goal is to match (or
forego) a vertex as soon as
it arrives.

• The decisions made are
irrevocable.

Online Model
• Typically, a bipartite graph

G=(U,V,E). The set U is
known to the algorithm.
Vertices in V arrive one at a
time, and reveal edges
incident on them.

• The goal is to match (or
forego) a vertex as soon as
it arrives.

• The decisions made are
irrevocable.

Online Model
• Typically, a bipartite graph

G=(U,V,E). The set U is
known to the algorithm.
Vertices in V arrive one at a
time, and reveal edges
incident on them.

• The goal is to match (or
forego) a vertex as soon as
it arrives.

• The decisions made are
irrevocable.

Online Model
• Typically, a bipartite graph

G=(U,V,E). The set U is
known to the algorithm.
Vertices in V arrive one at a
time, and reveal edges
incident on them.

• The goal is to match (or
forego) a vertex as soon as
it arrives.

• The decisions made are
irrevocable.

Online Model
• Typically, a bipartite graph

G=(U,V,E). The set U is
known to the algorithm.
Vertices in V arrive one at a
time, and reveal edges
incident on them.

• The goal is to match (or
forego) a vertex as soon as
it arrives.

• The decisions made are
irrevocable.

Online Model

• No “take-backs”
implies that an exact
solution cannot be
guaranteed. The best
we can do is a -
approximation (due to
Karp-Vazirani-Vazirani.)

(1 −
1
e)

Revoking decisions

Revoking decisions

• Revoking decisions can
increase the size of the
matching.

Revoking decisions

• Revoking decisions can
increase the size of the
matching.

• If a larger matching is
possible, then there is
a way to change your
decisions so that you
get a larger matching.

Revoking decisions

• Revoking decisions can
increase the size of the
matching.

• If a larger matching is
possible, then there is
a way to change your
decisions so that you
get a larger matching.

Revoking decisions
• Revoking decisions can

increase the size of the
matching.

• If a larger matching is
possible, then there is
a way to change your
decisions so that you
get a larger matching.

Revoking decisions
• Revoking decisions can

increase the size of the
matching.

• If a larger matching is
possible, then there is
a way to change your
decisions so that you
get a larger matching.

• These changes are
made along an
“augmenting path”.

Revoking decisions
• Revoking decisions can

increase the size of the
matching.

• If a larger matching is
possible, then there is
a way to change your
decisions so that you
get a larger matching.

• These changes are
made along an
“augmenting path”.

Is the condition realistic?

Is the condition realistic?

• Is the “no take-backs” condition realistic?

Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been
assigned to an advertiser, it doesn’t make sense to
reassign it.

Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been
assigned to an advertiser, it doesn’t make sense to
reassign it.

• However, it makes sense to re-assign clients to
another server in situations such as job scheduling.

Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been
assigned to an advertiser, it doesn’t make sense to
reassign it.

• However, it makes sense to re-assign clients to
another server in situations such as job scheduling.

• On the other hand, re-assigning might be costly, or
may cause interruptions. So it makes sense to
insist on minimizing changes.

Online Model With
Recourse

Online Model With
Recourse

• In this model, the clients arrive one at a time
along with their edges, and ask to be matched to
a server.

Online Model With
Recourse

• In this model, the clients arrive one at a time
along with their edges, and ask to be matched to
a server.

• The algorithm is allowed to change the matching
over time, and is required to always maintain a
maximum matching.

Online Model With
Recourse

• In this model, the clients arrive one at a time
along with their edges, and ask to be matched to
a server.

• The algorithm is allowed to change the matching
over time, and is required to always maintain a
maximum matching.

• The goal is to minimize the total number of
changes made to the matching, denoted
recourse.

Online Model With
Recourse

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is O(n2) .

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

• The best known result on bipartite graphs is
due to Bernstein-Holm-Rotenberg which nearly
matches the lower bound of due to Grove-
Kao-Krishnan-Vitter.

O(n2) .

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

• The best known result on bipartite graphs is
due to Bernstein-Holm-Rotenberg which nearly
matches the lower bound of due to Grove-
Kao-Krishnan-Vitter.

O(n2) .

O(n log2 n)

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

• The best known result on bipartite graphs is
due to Bernstein-Holm-Rotenberg which nearly
matches the lower bound of due to Grove-
Kao-Krishnan-Vitter.

O(n2) .

O(n log2 n)

Ω(n log n)

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

• The best known result on bipartite graphs is
due to Bernstein-Holm-Rotenberg which nearly
matches the lower bound of due to Grove-
Kao-Krishnan-Vitter.

• The best known upper bound on trees is
which matches the lower bound (due to Bosek et al.)

O(n2) .

O(n log2 n)

Ω(n log n)

n

Online Model With
Recourse

This model is well-studied. Suppose is the number of
clients in the graph then,

• The trivial bound is

• The best known result on bipartite graphs is
due to Bernstein-Holm-Rotenberg which nearly
matches the lower bound of due to Grove-
Kao-Krishnan-Vitter.

• The best known upper bound on trees is
which matches the lower bound (due to Bosek et al.)

O(n2) .

O(n log2 n)

Ω(n log n)

O(n log n),

n

Edge-Arrival Model

Edge-Arrival Model

• We consider a generalization of the “vertex-
arrival” model. We allow the graph to be non-
bipartite and the edges of the graph are
revealed one at a time.

Edge-Arrival Model

• We consider a generalization of the “vertex-
arrival” model. We allow the graph to be non-
bipartite and the edges of the graph are
revealed one at a time.

• However, in this model, strong-lower bounds
are known for even simple graphs with
adversarial ordering of the edges. As an
example, the path graph.

Edge Arrival: Adversarial
Ordering

Random Arrival

Random Arrival

• To overcome the lower bound, we consider a
natural relaxation of the problem where the
adversary can choose the graph, but the edges
of the graph arrive in a random order.

Random Arrival

• To overcome the lower bound, we consider a
natural relaxation of the problem where the
adversary can choose the graph, but the edges
of the graph arrive in a random order.

• In practical situations, it is unlikely that we
land in a doubly worst-case situation — a worst
case graph as well as a worst case ordering of
the edges.

Our Results

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.Ω (n2/log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

Ω (n2/log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

Ω (n2/log n)
O(n log2 n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

Ω (n2/log n)
O(n log2 n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

Ω (n2/log n)
O(n log2 n)

O(n log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

• For trees, we also have a lower bound of
on expected recourse.

Ω (n2/log n)
O(n log2 n)

O(n log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

• For trees, we also have a lower bound of
on expected recourse.

Ω (n2/log n)
O(n log2 n)

O(n log n)

Ω(n log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

• For trees, we also have a lower bound of
on expected recourse.

Ω (n2/log n)
O(n log2 n)

O(n log n)

Ω(n log n)

Our Results
• We show that for the case of general graphs (non-

bipartite) that random arrival doesn’t help. We get a
lower bound of on expected recourse.

• For trees, we get an upper bound of on
expected recourse

• For paths, we get an upper bound of on
expected recourse.

• For trees, we also have a lower bound of
on expected recourse.

Ω (n2/log n)
O(n log2 n)

O(n log n)

Ω(n log n)

Augmenting Paths: An
augmenting path is a
path with alternating
matched and
unmatched edges that
ends in free vertices.

Interchanging matched
and unmatched edges
along an augmenting
path increases the size
of a matching.

Augmenting Paths: An
augmenting path is a
path with alternating
matched and
unmatched edges that
ends in free vertices.

Interchanging matched
and unmatched edges
along an augmenting
path increases the size
of a matching.

Augmenting Paths: An
augmenting path is a
path with alternating
matched and
unmatched edges that
ends in free vertices.

Interchanging matched
and unmatched edges
along an augmenting
path increases the size
of a matching.

Remark: Total recourse
taken by the algorithm
corresponds exactly to the
total length of the
augmenting paths taken
by the algorithm. We will
upper and lower bound the
length of augmenting
paths which will give us a
bound on the total
recourse as well.

Perfect Matching: In case
of graphs with an even
number of vertices, it is a
matching that matches all
vertices in the graph.

Near-Perfect Matching: In
case of graphs with an
odd number of vertices, it
is a matching that
matches all vertices but
one in the graph

Perfect Matching: In case
of graphs with an even
number of vertices, it is a
matching that matches all
vertices in the graph.

Near-Perfect Matching: In
case of graphs with an
odd number of vertices, it
is a matching that
matches all vertices but
one in the graph

Lower Bound Graph

Lower Bound Graph

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

t =
n

500 log n

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

t =
n

500 log n
Ks,

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

t =
n

500 log n
Ks,

s = 400 log n .

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

t =
n

500 log n
Ks,

s = 400 log n .

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Ks,

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Ks,
100 log n

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Ks,
100 log n U(i) .

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Ks,
100 log n

U(i)
U(i) .

Lower Bound Graph
• We have copies of

the complete graph on
vertices, where

• These ’s are arranged in a
ring, with edges between
each pair of vertices of
consecutive ’s.

• In each copy of we have a
set of vertices, called
Each of these ’s are
matched to We call these
“dangling” edges.

t =
n

500 log n
Ks,

s = 400 log n .

Ks

Ks

Ks,
100 log n

U(i)

D(i) .

U(i) .

The Lower Bound: I

The Lower Bound: I

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

G

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

p,

G

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

D(i)
p,

G

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

D(i)
p,

Gp

G

The Lower Bound: I
• Let be the lower bound

graph. Let denote the
graph obtained by sampling
the edges of
independently with
probability and ignoring the
degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

G
Gp

D(i)
p,

p ∈ [1/2,3/4] Gp

G

The Lower Bound: II
• Let denote the total number of

edges in the graph. Let
denote the graph obtained by
sampling any edges of and
ignoring the degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching or a near
perfect matching with high probability.

Theorem 2: For ,
contains a perfect matching or a near
perfect matching with high probability.

Gp⋅m

p ⋅ m G,

p ∈ [1/2,3/4]

Gp

Gp⋅m

p ∈ [1/2,3/4]

m

D(i)

The Lower Bound: II
• Let denote the total number of

edges in the graph. Let
denote the graph obtained by
sampling any edges of and
ignoring the degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching or a near
perfect matching with high probability.

Theorem 2: For ,
contains a perfect matching or a near
perfect matching with high probability.

Gp⋅m

p ⋅ m G,

p ∈ [1/2,3/4]

Gp

Gp⋅m

p ∈ [1/2,3/4]

m

D(i)

The Lower Bound: II
• Let denote the total number of

edges in the graph. Let
denote the graph obtained by
sampling any edges of and
ignoring the degree 0 vertices of ’s.

Theorem 1: For ,
contains a perfect matching or a near
perfect matching with high probability.

Theorem 2: For ,
contains a perfect matching or a near
perfect matching with high probability.

Gp⋅m

p ⋅ m G,

p ∈ [1/2,3/4]

Gp

⟹

Gp⋅m

p ∈ [1/2,3/4]

m

D(i)

The Lower Bound: III

Theorem 2: For , contains a
perfect matching or a near perfect matching
with high probability.

Lower bound of on the recourse.

p ∈ [1/2,3/4] Gp⋅m

Ω (n2/log n)

The Lower Bound: III

Theorem 2: For , contains a
perfect matching or a near perfect matching
with high probability.

Lower bound of on the recourse.

p ∈ [1/2,3/4] Gp⋅m

⟹
Ω (n2/log n)

The Lower Bound: IV

Lower Bound: VI

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

t =
1
2

⋅ m

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

t =
1
2

⋅ m

t =
3
4

⋅ m,

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

t =
1
2

⋅ m

t =
3
4

⋅ m, Ω(n)

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

• Each of these join an augmenting path of
expected length

t =
1
2

⋅ m

t =
3
4

⋅ m, Ω(n)

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

• Each of these join an augmenting path of
expected length

t =
1
2

⋅ m

t =
3
4

⋅ m, Ω(n)

Θ (n /log n) .

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

• Each of these join an augmenting path of
expected length

• This implies total expected recourse is

t =
1
2

⋅ m

t =
3
4

⋅ m, Ω(n)

Θ (n /log n) .

Lower Bound: VI

• With high probability, between times
and at least “dangling” edges
arrive.

• Each of these join an augmenting path of
expected length

• This implies total expected recourse is

t =
1
2

⋅ m

t =
3
4

⋅ m, Ω(n)

Θ (n /log n) .

Ω (n2/log n) .

Proof of Theorem 1
Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

Gpp ∈ [1/2,3/4]

Claim 1: Consider while
ignoring the vertices whose
“dangling” edges have been
included in . Then,
contains a perfect or a near
perfect matching with high
probability.

K(i)
s

Gp K(i)
s

Proof of Theorem 1
Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

Gpp ∈ [1/2,3/4]

Claim 1: Consider while
ignoring the vertices whose
“dangling” edges have been
included in . Then,
contains a perfect or a near
perfect matching with high
probability.

K(i)
s

Gp K(i)
s

Proof of Theorem 1
Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

Gpp ∈ [1/2,3/4]

Claim 1: Consider while
ignoring the vertices whose
“dangling” edges have been
included in . Then,
contains a perfect or a near
perfect matching with high
probability.

K(i)
s

Gp K(i)
s

Proof of Theorem 1

Suppose each contains a
perfect matching, then
contains a perfect matching.

K(i)
s

Gp

Proof of Theorem 1
Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

Gpp ∈ [1/2,3/4]

Claim 2: Fix maximum matching
in . Conditioning on Claim 1,
let and be two consecutive
“deficient” ’s (that is ’s that
have a near perfect matching).
Then, with high probability, there
is an augmenting path joining the
unmatched vertex in with the
unmatched vertex in .

ℳi
K(i)

s
K(k)

sK(j)
s

Ks

K(j)
s

K(k)
s

Ks

Proof of Theorem 1
Theorem 1: For ,
contains a perfect matching
or a near perfect matching
with high probability.

Gpp ∈ [1/2,3/4]

Claim 2: Fix maximum matching
in . Conditioning on Claim 1,
let and be two consecutive
“deficient” ’s (that is ’s that
have a near perfect matching).
Then, with high probability, there
is an augmenting path joining the
unmatched vertex in with the
unmatched vertex in .

ℳi
K(i)

s
K(k)

sK(j)
s

Ks

K(j)
s

K(k)
s

Ks

Proof of Theorem 1
• Claim 1 and Claim 2 imply

Theorem 1. We essentially show
that there is a near perfect or
perfect matching in each of the
with high probability. We pair up
the deficient , and show that
there is an augmenting path
between the unmatched vertices
with high probability. It follows
that there is at most one vertex in
all of that is unmatched, which
implies that there is a perfect or a
near perfect matching.

Ks 's

Ks 's

Gp

Proof of Theorem 1
• Claim 1 and Claim 2 imply

Theorem 1. We essentially show
that there is a near perfect or
perfect matching in each of the
with high probability. We pair up
the deficient , and show that
there is an augmenting path
between the unmatched vertices
with high probability. It follows
that there is at most one vertex in
all of that is unmatched, which
implies that there is a perfect or a
near perfect matching.

Ks 's

Ks 's

Gp

Proof of Claim 1
• Claim 1 follows from the

following well-known
theorem:

Theorem: Let be the
graph obtained by adding
an edge between every pair
of vertices independently
and with probability , then,

Gn,p

p

Proof of Claim 1
• Claim 1 follows from the

following well-known
theorem:

Theorem: Let be the
graph obtained by adding
an edge between every pair
of vertices independently
and with probability , then,

Gn,p

p

Pr(Gn,p does not contain a perfect matching) = O (ne−np)

Proof of Claim 1
• Claim 1 follows from the

following well-known
theorem:

Theorem: Let be the
graph obtained by adding
an edge between every pair
of vertices independently
and with probability , then,

Gn,p

p

Pr(Gn,p does not contain a perfect matching) = O (ne−np)

Proof of Claim 2
• Case 1: When “deficient” ’s are

consecutive.

Proof idea: Consider a bipartition of
and a bipartition of according
to and .

Note that . Further,
conditioned on Claim 1,

This holds for as well. Since

it follows there must an edge between
these sets and therefore an augmenting
path between

Ks

P ∪ Q Ks
(j)

ℳj ℳj+1

Ks
(j+1)P′� ∪ Q′�

|NP(v) | = Ω(log n)
|ℳj(NP(v)) | = Ω(log n) .

v′�
|ℳj(NP(v)) | = Ω(log n) and |ℳj+1(N′�P(v′�)) | = Ω(log n)

v and v′�.

Proof of Claim 2
• Case 2: When the “deficient”

are not consecutive.

Proof idea: Let denote the
bipartition of for We can
inductively prove that has
alternating paths to a large number
of vertices in for and
therefore, to Since the number of
such vertices is large, it follows that
must have an edge to one of them.
Therefore, there is an augmenting
path from to .

Ks 's

(Pl) ∪ (Ql)
K(l)

s j ≤ l ≤ k .
v

Ql
Qk .

v

v′�

j ≤ l ≤ k

v′�

Open Questions

• Can we show a lower bound of for the
case of bipartite graphs as well?

• Close the gap between upper and lower bounds
for the case of trees?

Open Questions

• Can we show a lower bound of for the
case of bipartite graphs as well?

• Close the gap between upper and lower bounds
for the case of trees?

Ω (n2/log n)

