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Applications
• Ad-Allocation: Ad slots are allocated through 

contracts. There are demand and supply 
constraints that directly lead to the question 
of finding an optimal matching between the 
slots and advertisers.

• Job Scheduling: We have a set of servers with 
different capabilities available to process jobs 
from persistent sources - jobs that need to be 
processed over long periods of time. 
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Online Model

• No “take-backs” 
implies that an exact 
solution cannot be 
guaranteed. The best 
we can do is a         -
approximation (due to 
Karp-Vazirani-Vazirani.)

(1 −
1
e )



Revoking decisions



Revoking decisions

• Revoking decisions can 
increase the size of the 
matching.



Revoking decisions

• Revoking decisions can 
increase the size of the 
matching.

• If a larger matching is 
possible, then there is 
a way to change your 
decisions so that you 
get a larger matching.



Revoking decisions

• Revoking decisions can 
increase the size of the 
matching.

• If a larger matching is 
possible, then there is 
a way to change your 
decisions so that you 
get a larger matching.



Revoking decisions
• Revoking decisions can 

increase the size of the 
matching. 

• If a larger matching is 
possible, then there is 
a way to change your 
decisions so that you 
get a larger matching. 



Revoking decisions
• Revoking decisions can 

increase the size of the 
matching. 

• If a larger matching is 
possible, then there is 
a way to change your 
decisions so that you 
get a larger matching. 

• These changes are 
made along an 
“augmenting path”.



Revoking decisions
• Revoking decisions can 

increase the size of the 
matching. 

• If a larger matching is 
possible, then there is 
a way to change your 
decisions so that you 
get a larger matching. 

• These changes are 
made along an 
“augmenting path”.



Is the condition realistic?



Is the condition realistic?

• Is the “no take-backs” condition realistic?



Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been 
assigned to an advertiser, it doesn’t make sense to 
reassign it. 



Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been 
assigned to an advertiser, it doesn’t make sense to 
reassign it. 

•  However, it makes sense to re-assign clients to 
another server in situations such as job scheduling. 



Is the condition realistic?

• Is the “no take-backs” condition realistic?

• In the case of Ad Allocation, once a slot has been 
assigned to an advertiser, it doesn’t make sense to 
reassign it. 

•  However, it makes sense to re-assign clients to 
another server in situations such as job scheduling. 

• On the other hand, re-assigning might be costly, or 
may cause interruptions. So it makes sense to 
insist on minimizing changes. 
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• In this model, the clients arrive one at a time 
along with their edges, and ask to be matched to 
a server. 

• The algorithm is allowed to change the matching 
over time, and is required to always maintain a 
maximum matching. 

• The goal is to minimize the total number of 
changes made to the matching, denoted 
recourse.
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Edge-Arrival Model

• We consider a generalization of the “vertex-
arrival” model. We allow the graph to be non-
bipartite and the edges of the graph are 
revealed one at a time. 

• However, in this model, strong-lower bounds 
are known for even simple graphs with 
adversarial ordering of the edges. As an 
example, the path graph.  
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• To overcome the lower bound, we consider a 
natural relaxation of the problem where the 
adversary can choose the graph, but the edges 
of the graph arrive in a random order. 

• In practical situations, it is unlikely that we 
land in a doubly worst-case situation — a worst 
case graph as well as a worst case ordering of 
the edges. 
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Remark: Total recourse 
taken by the algorithm 
corresponds exactly to the 
total length of the 
augmenting paths taken 
by the algorithm. We will 
upper and lower bound the 
length of augmenting 
paths which will give us a 
bound on the total 
recourse as well.  
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Proof of Theorem 1
Theorem 1: For                   ,      
contains a perfect matching 
or a near perfect matching 
with high probability.

Gpp ∈ [1/2,3/4]

Claim 1: Consider       while 
ignoring the vertices whose 
“dangling” edges have been 
included in      . Then,       
contains a perfect or a near 
perfect matching with high 
probability.  
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Proof of Theorem 1

Suppose each       contains a 
perfect matching, then     
contains a perfect matching.    

K(i)
s
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Proof of Theorem 1
Theorem 1: For                 ,      
contains a perfect matching 
or a near perfect matching 
with high probability.

Gpp ∈ [1/2,3/4]

Claim 2: Fix maximum matching       
in      . Conditioning on Claim 1, 
let      and       be two consecutive 
“deficient”    ’s (that is    ’s that 
have a near perfect matching). 
Then, with high probability, there 
is an augmenting path joining the 
unmatched vertex in      with the 
unmatched vertex in      .
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Proof of Theorem 1
• Claim 1 and Claim 2 imply 

Theorem 1. We essentially show 
that there is a near perfect or 
perfect matching in each of the       
with high probability. We pair up 
the deficient        , and show that 
there is an augmenting path 
between the unmatched vertices 
with high probability. It follows 
that there is at most one vertex in 
all of      that is unmatched, which 
implies that there is a perfect or a 
near perfect matching. 
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Proof of Claim 1 
• Claim 1 follows from the 

following well-known 
theorem: 

Theorem: Let       be the 
graph obtained by adding 
an edge between every pair 
of vertices independently 
and with probability   , then, 
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Proof of Claim 2
• Case 1: When “deficient”      ’s are 

consecutive.  

Proof idea: Consider a bipartition           of        
and a bipartition            of           according 
to      and        .  

Note that                             . Further,  
conditioned on Claim 1,            

This holds for     as well. Since  

it follows there must an edge  between 
these sets and therefore an augmenting 
path between  

Ks

P ∪ Q Ks
( j)

ℳj ℳj+1

Ks
( j+1)P′� ∪ Q′�

|NP(v) | = Ω(log n)
|ℳj(NP(v)) | = Ω(log n) .

v′�
|ℳj(NP(v)) | = Ω(log n) and  |ℳj+1(N′�P(v′�)) | = Ω(log n)

v and v′�.



Proof of Claim 2
• Case 2: When the “deficient”        

are not consecutive. 

Proof idea: Let             denote the 
bipartition of       for               We can 
inductively prove that    has 
alternating paths to a large number 
of vertices in      for            and 
therefore, to      Since the number of 
such vertices is large, it follows that    
must have an edge to one of them. 
Therefore, there is an augmenting 
path from    to    .

Ks 's

(Pl) ∪ (Ql)
K(l)

s j ≤ l ≤ k .
v

Ql
Qk .

v

v′�

j ≤ l ≤ k

v′�



Open Questions

• Can we show a lower bound of                for the 
case of bipartite graphs as well? 

• Close the gap between upper and lower bounds 
for the case of trees?
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