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Abstract

In the incremental cycle detection problem, edges are added to a directed graph (initially empty), and

the algorithm has to report the presence of the first cycle, once it is formed. A closely related problem is

the incremental topological sort problem, where edges are added to an acyclic graph, and the algorithm is

required to maintain a valid topological ordering. Since these problems arise naturally in many applications

such as scheduling tasks, pointer analysis, and circuit evaluation, they have been studied extensively in the

last three decades. Motivated by the fact that in many of these applications, the presence of a cycle is not

fatal, we study a generalization of these problems, incremental maintenance of strongly connected components

(incremental SCC).

Several incremental algorithms in the literature which do cycle detection and topological sort in directed

acyclic graphs, such as those by [BFGT16] and [HKM+12], also generalize to maintain strongly connected

components and their topological sort in general directed graphs. The algorithms of [HKM+12] and [BFGT16]

have a total update time of O(m
3/2) and O(m ·min

{
m

1/2, n
2/3

}
) respectively, and this is the state of the

art for incremental SCC. But the most recent algorithms for incremental cycle detection and topological

sort ([BC18] and [BK20]), which yield total (randomized) update time Õ(min
{
m

4/3, n2
}
), do not extend

to incremental SCC. Thus, there is a gap between the best known algorithms for these two closely related

problems.

In this paper, we bridge this gap by extending the framework of [BK20] to general directed graphs. More

concretely, we give a Las Vegas algorithm for incremental SCCs with an expected total update time of

Õ(m
4/3). A key ingredient in the algorithm of [BK20] is a structural theorem (first introduced in [BC18])

that bounds the number of “equivalent” vertices. Unfortunately, this theorem only applies to DAGs. We

show a natural way to extend this structural theorem to general directed graphs, and along the way we

develop a significantly simpler and more intuitive proof of this theorem.
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1 Introduction

In dynamic algorithms, our main goal is to maintain a key property of the graph while an adversary makes

changes in the graph in the form of edge insertions and deletions. An algorithm is called incremental if it handles

only insertions, decremental if it handles only deletions and fully dynamic if it handles both insertions as well as

deletions. For a dynamic algorithm we hope to optimize the update time of the algorithm, which is the time taken

by the algorithm to adapt to the changes to the input and modify the results. For incremental/decremental algo-

rithms, one typically seeks to minimize the total update time over the entire sequence of edge insertions/deletions.

In this paper, we consider the problem of maintaining strongly connected components in the incremental

setting (incremental SCC). This is a generalization of the problems of incremental cycle detection and topological

sorting in directed acyclic graph, which find application in pointer analysis [PK03], deadlock detection [Bel90],

circuit evaluation [AHR+90] and scheduling tasks. In many of these applications, the presence of a cycle is not

fatal [PK03], which motivates the general problem of maintaining strongly connected components, as well as the

topological order of these components.

The problems of incremental cycle detection and topological sorting were first studied by Katriel and Bod-

laender [KB06], who gave the first non-trivial algorithm for these problems with a total update time of

O(min
{
m3/2 log n,m3/2 + n2 log n

}
). This bound was improved by Liu and Chao [LC07] to O(m3/2 +m

√
n log n).

Since then, these problems and incremental SCC have been studied extensively (see for example [AF10],[AFM08],

[BFG09],[HKM+12],[BFGT16], [CFKR13],[MNR96]). Several algorithms that do incremental cycle detection

and topological sort maintenance in directed acyclic graphs can be modified to get algorithms for incremental

SCC. For example, the algorithm of Haeupler, Kavitha, Mathew, Sen and Tarjan [HKM+12] is able to do cycle

detection as well as strongly connected component maintenance in O(m3/2) total update time. In an important

result, Bender, Fineman, Gilbert and Tarjan presented two algorithms for strongly connected components, with to-

tal update times of O(n2 log n) and O(m·min
{
m1/2, n2/3

}
), for dense and sparse graphs, respectively (see Table 1).

The two most recent algorithms in this area are limited to cycle detection and topological sort: Bernstein and

Chechik [BC18] gave a Las Vegas algorithm with an expected total update time of O(m
√
n log n); Bhattacharya

and Kulkarni [BK20] combined the balanced search approach of [HKM+12] with the results of [BC18] to get an

algorithm with a total expected runtime of Õ(m4/3). As a result, there was still a gap between the best known

algorithms for cycle detection and topological sort (update time of Õ(min
{
m4/3, n2

}
) and for incremental SCC

(update time of Õ(min
{
m3/2, n2

}
)). In this paper, we bridge the gap between these closely related problems.

More formally, we prove the following result.

Theorem 1. There exists an incremental algorithm for maintaining strongly connected components in directed

graphs with expected total time Õ(m4/3), where m refers to the number of edges in the final graph. The algorithm

can also maintain the topological order of these components.

Summary of Techniques. We obtain our results by extending the technique of [BK20] to the case of general

directed graphs. Both [BC18] and [BK20] detect cycles by doing a graph search after the insertion of an edge

(u, v). However, they reduce their search space by only exploring “equivalent” vertices: vertices whose ancestor

and descendant sets agree on a random subset S of V . A key ingredient of the analysis is a structural theorem

of [BC18] that bounds the total number of equivalent pairs created by the sequence of insertions. However, their

notion of equivalent vertices only applies to acyclic directed graphs. Additionally, the proof of this structural

theorem (Lemma 3.2 and 3.5 of [BC18]) is rather unintuitive.

Our contributions are three-fold. We present a new proof of the structural theorem of [BC18], which is

significantly simpler and more intuitive. We also show a natural generalization of this theorem to general directed

graphs. Finally, we show how the framework of [BK20] can be extended to maintain SCCs in a general graph,

rather than just doing cycle detection and topological sort in a DAG.

Related Problems A closely related problem that has received a lot of attention is maintaining strongly

connected components in a decremental graph. This problem has been widely studied (see e.g. [Rod13, Lac13,

CHI+16, BPW19]) and a recent algorithm achieves near-optimal Õ(m) total expected update time [BPW19].
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Table 1: Known Results for Incremental Cycle Detection, Topological Sort and SCC

Reference Update Time Incremental SCC

[KB06] O(min
{
m3/2 log n,m3/2 + n2 log n

}
) No

[LC07] O(m3/2 +m
√
n log n) No

[AFM08] O(n2.75) No

[BFG09] Õ(n2) No

[HKM+12] O(m3/2) Yes

[BFGT16] O(m ·min
{
m1/2, n2/3

}
), Õ(n2) Yes

[BC18] Õ(m
√
n) No

[BK20] Õ(m4/3) No

Although the goal in both problems is to maintain SCCs, the incremental and decremental versions have little

overlap in terms of techniques.

Another related problem is that of maintaining single-source shortest paths in an incremental directed graph.

The current state-of-the-art for this problem is Õ(n2) in dense graphs [GWW20] and Õ(m
√
n+m7/5) in sparse

ones [CZ21].

2 Preliminaries

We consider the problem of maintaining strongly connected components in directed graphs in the incremental

setting. In this setting, we start with an empty graph, and directed edges are added to the graph one at a time.

We will let G refer to the current version of the graph, and its vertex and edge sets are denoted as V and E

respectively. We use m to denote the total number of edges added to G and n to denote |V (G)|.

Consider two vertices u, v ∈ V . We say that the vertex u is an ancestor of v, and v is a descendant of u

if there is a path from u to v in G. We will say that u and v are related if one is the ancestor of other. For

u ∈ V , we use A(u) and D(u) to denote the current set of ancestors and descendants of u. Consider any S ⊆ V ,

for u ∈ V , we use AS(u) to denote the set A(u) ∩ S, and DS(u) to denote the set D(u) ∩ S. For any v ∈ V , we

will use C(v) to denote the strongly connected component containing v in the current graph G, and |C(v)| will
be the number of vertices contained in the component.

We will also use the following result due to Italiano [Ita86] on single-source incremental reachability.

Lemma 2. [Ita86] Given v ∈ V , there exists an algorithm that maintains A(v) and D(v) in O(m) total time

during the course of insertion of m edges.

We also use the following simplifying assumption by [BC18] (proved in the appendix of their paper).

Lemma 3. [BC18] We can assume that every vertex in the current graph G = (V,E) has degree O(m/n).

Data Structures Used. To maintain the strongly connected components, we use the disjoint set data structure

of Tarjan [Tar75]. This data structure stores the partition of the vertex set into disjoint sets. In our case,

these disjoint sets will be the strongly connected components. Moreover, the disjoint sets are represented by a

canonical element, which in this case will be a vertex. Following operations are supported by this data structure.

1. Find(x): Given a vertex x, this returns the canonical vertex of the component containing x.

2. Link(x, y): This operation joins the components whose canonical vertices are x and y. The newly formed

component’s canonical vertex is x.

The data structure supports any sequence of Find and Link operations in O(n log n) total time plus O(1) time

per operation. Our search and reordering operations will take Ω(n log n) total time, so we can think of the Find

and Link operations as being performed in O(1) amortized time per operation.

Additionally, to maintain the topological ordering of the strongly connected component, we use the ordered list

data structure of [DS87] and [BCD+02], which supports the following operations in O(1)-time.
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1. Insert-Before(x, y): This operation inserts the vertex x before the vertex y in the ordered list.

2. Insert-After(x, y): This operation inserts the vertex x after the vertex y in the ordered list.

3. Delete(x): This operation deletes the vertex x from the current ordered list.

4. Order(x, y): This operation returns whether x appears before y in the ordering or not.

This data structure maintains the topological sort k of the strongly connected components implicitly. We will

use some additional data structures for our algorithm, that we will mention when we discuss the algorithm.

3 Similarity

3.1 Previous Work

To bound the running time of their algorithm [BC18] introduced the notion of sometime-τ -similar pairs. We

briefly discuss their definition.

Definition 4. [BC18] A pair of vertices u and v are said to be sometime-τ -similar if there is a time t at which

u is an ancestor of v, |A(u)⊕A(v)| ≤ τ , and |D(u)⊕D(v)| ≤ τ .

The total number of sometime-τ -similar pairs are Õ(nτ). Note that this bound is false if we apply the same

definition of similarity to the case of directed graphs with cycles. As an example, consider the case where the

entire graph is a cycle. For such a graph, by Definition 4, we have O(n2) sometime-τ -similar pairs. So, a new

definition of similarity is needed. Moreover, their proof strategy also uses the final topological ordering of the

graph. Such an ordering is not possible in directed graphs with cycles. We overcome this by defining another

ordering that (like topological ordering) is consistent with the incremental updates to the graph, but at the

same time allows for strongly connected components.

3.2 A New Notion Of Similarity

Definition 5. Consider u, v ∈ V . Let C(u) and C(v) denote the strongly connected components containing u

and v respectively, then u and v are called τ -similar in the current graph G if u and v are related, |C(u)| ≤ τ ,

|C(v)| ≤ τ , and |A(u)⊕A(v)| ≤ τ , |D(u)⊕D(v)| ≤ τ . Vertices u and v are called sometime-τ -similar, if they

are τ -similar at some point during the course of m edge insertions.

Remark 6. Consider any u, v ∈ V with C(u) = C(v). If |C(u)| ≥ τ + 1 then u and v are not τ -similar in G.

But if C(u) ≤ τ then they are τ -similar.

With this remark, we distinguish between two types sometime-τ -similar vertices.

Definition 7. We call u and v related-sometime-τ -similar if there is a time t when u and v are τ -similar with

C(u) ̸= C(v). On the other hand if there is a time t when u and v are τ -similar and C(u) = C(v), then we

call u and v equivalent-sometime-τ -similar. It is possible for u, v to be both related-sometime-τ -similar and

equivalent-sometime-τ -similar.

We show that the total number of sometime-τ -similar pairs are bounded.

Theorem 8. The total number of sometime-τ -similar pairs are Õ(nτ).

Our proof will bound related-sometime-τ -similar pairs. It is easy to see that the number of equivalent-

sometime-τ -similar is O(nτ).

Observation 9. A vertex v can only be equivalent-sometime-τ -similar to the first τ vertices that join the same

component as v. Thus, the total number of equivalent-sometime-τ -similar pairs is O(nτ).

To prove Theorem 8 we need the following claim.

Claim 10. There exists a fixed total order I on the vertices of G which satisfies the following property:

1. Consider any u, v ∈ V . Let t1 be the first time u and v become related such that u is an ancestor of v,

then I(u) < I(v).

Note that if the final graph Gm is acyclic, then I is satisfied by the topological ordering. We will show that

it is possible to obtain an ordering that satisfies the above properties even if the graph has a cycle.
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3.3 Existence of A Fixed Total Order.

In this subsection, we define an ordering I that satisfies Claim 10.

Definition 11. We define a relation ≺ over the vertices of G: u ≺ v if and only if at some time t, u is an

ancestor of v and C(u) ̸= C(v).

We first note that ≺ is a strict partial order. We formally state and prove the following claim.

Claim 12. The relation ≺ on the vertices of G is a strict partial order.

Proof. We need to show that ≺ is anti-symmetric and transitive. Anti-symmetry follows from the fact that for

each pair of vertices u and v, either u ⊀ v or v ⊀ u. Now suppose u ≺ v and v ≺ w. Let t1 be the time at

which u is an ancestor of v and C(u) ̸= C(v). Similarly, let t2 be the time at which v is an ancestor of w and

C(v) ̸= C(w). Without loss of generality, assume that t2 ≥ t1. Observe that u is an ancestor of w at time t2. If

C(u) = C(w), then v ∈ C(w) at time t2 as well, which is a contradiction. So, at time t2, C(u) ̸= C(w). This

proves our claim.

Definition 13. We define I to be a linear extension of ≺. That is I is a total order consistent with ≺: if u ≺ v,

then I(u) < I(v).

Proof of Claim 10. We claim that I of Definition 13 satisfies Claim 10. Consider any two vertices u and v, and

let t1 be the time at which u and v first become related, with u being an ancestor of v. Therefore at time t1,

C(u) ̸= C(v), which implies that u ≺ v. Since I is consistent with ≺, we know that I(u) < I(v).

3.4 Bounding the Number of Similar Pairs.

In this section we will prove Theorem 8. From Observation 9, we conclude that it is sufficient to show that the

number of related-sometime-τ -similar pairs are at most O(nτ log n). We first introduce some notation. Moving

forward we will use I to denote an ordering that satisfies Claim 10. We note that Theorem 8 can be obtained by

combining the ordering I satisfying Claim 10 with a modification of the proof of sometime-τ -similar pairs in a

DAG in Section 3 of [BC18]. However, even for the simpler case of DAGs, the proof in [BC18] requires a long

case analysis. In this paper we present a different approach to the proof we believe is significantly simpler and

more intuitive.

Definition 14. Let u and v be a pair of related-sometime-τ -similar vertices. We denote it using an ordered

tuple (u, v) if I(u) < I(v).

Definition 15. For a vertex v, we define Ai(v) to be the set of vertices u such that (u, v) is a related-sometime-

τ -similar pair, and I(v)− I(u) ∈ [2i, 2i+1). Similarly, we define Di(v) to be the set of vertices w such that (v, w)

is a related-sometime-τ -similar pair, and I(w)− I(v) ∈ [2i, 2i+1).

Definition 16. For a vertex v and a fixed i, we define the graph GD,i
v with the vertex set Di(v) and the graph

GA,i
v with the vertex set Ai(v) as follows.

1. Let u1, u2, · · · , uα be the vertices of Ai(v), where the vertices are ordered according to the increasing order

of the time at which they become related-τ -similar with v. For j < k, we add an edge from uj to uk, if uj

is an ancestor of uk when uk first becomes τ -similar to v.

2. Let w1, w2, · · · , wβ be the vertices of Di(v), where the vertices are ordered according to the increasing

order of time at which they become related-τ -similar with v. For j < k, we add an edge from wj to wk if

wj is a descendant of wk when wk first becomes τ -similar to v.

See Figure 1 for an illustration.

Claim 17. Let (u, v) be a related-τ -similar pair such that I(v) − I(u) ∈ [2i, 2i+1). Consider w ∈ Ai(v) and

z ∈ Di(u), then I(w) < I(z).

Proof. Suppose I(z) < I(w). Note that I(u) < I(z), and I(w) < I(v). Consequently, I(u) < I(z) < I(w) < I(v).

Since I(z) − I(u) ≥ 2i, and I(v) − I(w) ≥ 2i, this implies that I(v) − I(u) ≥ 2i+1, which contradicts our

assumption that I(v)− I(u) ∈ [2i, 2i+1).
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Figure 1: We consider a related-τ -similar pair (u, v), where I(v)− I(u) ∈ [2i, 2i+1). All vertices of Ai(v) appear

before the vertices of Di(u).

Claim 18. For a vertex v, consider any Ai(v) = {u1, · · · , uα}, where uj are ordered in the increasing order of

time at which they become related-τ -similar to v. Then the number of edges in GA,i
v coming into uj is at least

j − τ . Similarly, let Di(v) = {w1, · · · , wβ}, where the vertices are ordered in the increasing order of time at

which they become related-τ -similar with v. Then the number of edges coming into wj in GD,i
v is at least j − τ .

Proof. Let t be the time at which (uj , v) become related-τ -similar. By t, for all i < j, (ui, v) are related-τ -similar.

If the in-degree of uj is at most j − τ − 1, then this implies that there are at least τ + 1 vertices ui, i < j

such that ui is not an ancestor of uj . However, these are all ancestors of v at time t. This implies that

|A(uj)⊕A(v)| ≥ τ + 1, contradicting the fact that uj and v are related-τ -similar at time t.

Definition 19. For a vertex v, consider w ∈ Ai(v). We call w bad with respect to v if the outdegree of w in

GA,i
v is at most 2τ . Similarly, we call a vertex z ∈ Di(v) bad with respect to v if the outdegree of z in GD,i

v is at

most 2τ .

Claim 20. For any v, the total number of bad vertices in Ai(v) for any i is at most 6τ . Similarly, the total

number of bad vertices in Di(v) for any i is at most 6τ .

Proof. As before, let Ai(v) = {u1, u2, · · · , uα}. Let B = {uα−4τ+1, · · · , uα}. Let A ⊂ Ai(v) \ B be the set of

vertices outside of B that are bad for v (see Figure 2 for an illustration). We want to prove that |A| ≤ 2τ . This

will give us the desired bound. Consider any w ∈ B. There are at least |A| − τ edges from A to w. So, the total

number of edges going from A to B is at least 4τ(|A| − τ). The average outdegree of the vertices in A is at least
4τ(|A|−τ)

|A| . Since the vertices in A are bad, we know that 4τ(|A|−τ)
|A| ≤ 2τ . This implies that |A| ≤ 2τ . The proof

for Di(v) is analogous.

Lemma 21. Let (u, v) be a related-sometime-τ -similar pair. Then, either u is bad for v or v is bad for u.

Proof. Let I(v)− I(u) ∈ [2i, 2i+1). As before we consider Ai(v) = {u1, · · · , uα}, and let Di(u) = {v1, · · · , vβ}.
Assume that neither u is bad for Ai(v) nor v is bad for Di(u). This implies that the number of edges going out of

u and v in GA,i
v and GD,i

u , respectively, are at least 2τ +1. Consider the related-τ -similar pairs (u1, v), · · · , (uα, v)

and (u, v1), · · · , (u, vβ). Note that among these pairs one of (uα, v) or (u, vβ) are the last to become related-τ -

similar. Without loss of generality, assume it is (u, vβ). Since we assume that u is not bad with respect to v, at

the point when (uα, v) becomes related-τ -similar, u is an ancestor of at least 2τ + 1 vertices in u1, · · · , uα. Note

that this claim also holds at the (later) time when (u, vβ) become related-sometime-τ -similar. We call this set of

vertices U . We now consider two different cases:

1. If vβ is not an ancestor of at least τ + 1 vertices in U , then this contradicts the fact that (u, vβ) is a

related-τ -similar pair.
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Figure 2: The vertices in green are the vertices of Ai(v) \ B that are bad for v. Since the vertices in B are

τ -similar to v, the total number of edges coming out of A and going into B is at least 4τ(|A| − τ).

2. Suppose vβ is an ancestor of at least τ + 1 vertices in U . Consider any uj ∈ U . Observe from Claim 17

that I(uj) < I(vβ). Since I satisfies Claim 10, we deduce that if vβ is an ancestor of uj , then it lies in the

same strongly connected component as uj . Since this is true for all uj ∈ U , it follows that |C(vβ)| ≥ τ + 1,

thus contradicting the fact that (u, vβ) is related-τ -similar (see Definition 5).

Remark 22. Observe that when we are in the acyclic case, then we don’t have to deal with the second case

at all, since I corresponds to the topological ordering of the final graph Gm.

Proof of Theorem 8. Consider a related-τ -similar pair (u, v). We charge this pair to u if v is bad for u, and we

charge it to v if u is bad for v. From Lemma 21, we know that each pair (u, v) is charged to either u or v. Finally,

we observe that for any u, for a fixed i, the total number of bad vertices in Di(u) or Ai(u) is at most 6τ each.

Therefore, the total charge on each vertex is at most 12τ log n (since i is at most log n). Since the total number

of vertices is n, we know that the total charge, and therefore the total number of related-sometime-τ -similar

pairs is at most O(nτ log n).

4 Equivalence

Consider u, v ∈ V , observe that u and v lie in the same strongly connected component iff A(u) = A(v) and

D(u) = D(v). However, the sets A(u) and D(v) are expensive to maintain for all vertices. Therefore, Bernstein

and Chechik [BC18] defined a relaxed notion of equivalence between vertices. We define a slightly different

version that will be useful for our algorithm.

Definition 23. (S-equivalence) Consider S which is created by including every vertex v ∈ V independently

with probability 12·logn/τ, where τ is a parameter to be defined by the algorithm. Vertices u and v are called

S-equivalent if they are related, AS(u) = AS(v), and DS(u) = DS(v). For the analysis of our algorithm, it will

be useful to distinguish between two types of S-equivalence.

1. Vertices x and y are Type 1 if they satisfy the above-mentioned condition and |C(x)| ≥ τ+1 or |C(y)| ≥ τ+1.

2. Vertices x and y are Type 2 if they satisfy the above-mentioned condition and |C(x)| ≤ τ and |C(y)| ≤ τ .

[BC18] sample a set S, and maintain a partition {Vi,j} of V , where Vi,j = {u ∈ V s.t. |AS(u)| = i, |DS(u)| = j}.
We define an ordering ≺∗ on these parts.
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Definition 24. We say that Vi,j ≺∗ Vk,l if either {i < k}, or {i = k and j > l} (note the slightly unusual

ordering, instead of j < l, we have j > l). For x ∈ V , we use V (x) to denote partition Vi,j that contains x.

This partition has the following properties which were proved in [BC18] for directed acyclic graphs, but

extend to general directed graphs as well.

Lemma 25. Let {Vi,j} be the partition of V maintained by the algorithm determined by the sampled set S,

then

1. If x and y are related, with x being an ancestor of y, then either V (x) ≺∗ V (y) or V (x) = V (y).

2. Consider a strongly connected component C of the current graph G, then C ⊆ Vi,j for some i, j.

3. If x and y are related, and V (x) = V (y), then x and y are S-equivalent.

Proof. We give a short proof of this lemma. If x is an ancestor of y, then A(x) ⊆ A(y), and D(y) ⊆ D(x).

In particular, AS(x) ⊆ AS(y) and DS(y) ⊆ DS(x). This immediately tells us that |AS(x)| ≤ |AS(y)|, and
|DS(y)| ≤ |DS(x)| and the first part of the claim follows. Finally, consider any strongly connected component

C, then for any x, y ∈ C, A(x) = A(y), D(x) = D(y). This implies that AS(x) = AS(y), DS(x) = DS(y) and

this proves the second part of the claim. To see the third part, assume without loss of generality that x is an

ancestor of y, and V (x) = V (y). Note that AS(x) ⊆ AS(y), and since |AS(x)| = |AS(y)|, we can conclude that

AS(x) = AS(y). Similarly, we can deduce that DS(x) = DS(y), thus proving that x and y are S-equivalent.

Keeping in mind Lemma 25, for a component C, we define V (C) as the partition Vi,j containing C. An

important component of our algorithm is maintaining a topological sort k of the strongly connected components.

This topological sort k will be consistent with the order ≺∗ of the partitions. That is, for strongly connected

components C and C ′ with V (C) ≺∗ V (C ′), k(C) < k(C ′). The existence of such a topological ordering is

guaranteed by Lemma 25. We will maintain a topological sort of the components by maintaining an ordered list

on the canonical vertices. The components are disjoint and each of them have a unique canonical vertex. So, we

will often use k(·) on canonical vertices as well.

The algorithms in [BC18] and [BK20] proceed by exploiting the notion of S-equivalence. This notion en-

ables them reduce the space of vertices that need to be explored to detect cycles (from Lemma 25). Finally,

they show that with high probability the total number of S-equivalent pairs is bounded, and the runtime of the

algorithm is proportional to this number. In order to prove this claim, they show that S-equivalent pairs and

sometime-τ -similar pairs are related. We show that our notion of sometime-τ -similarity can be used to bound

the number of Type 2 S-equivalent pairs, instead of all S-equivalent pairs. It will be clear as we move forward

why this is sufficient.

Recall Definition 23 and Definition 5. We show the following lemma relating sometime-τ -similar pairs and Type

2 S-equivalent pairs.

Lemma 26. Suppose S ⊆ V is obtained by including each x ∈ V independently with probability 12·logn
τ .

Suppose u and v are Type 2 S-equivalent, then with high probability, they are sometime-τ -similar.

Observe that Theorem 8 and Lemma 26 together imply the following theorem:

Theorem 27. Let S be sampled by including v ∈ V independently with probability 12·logn
τ . Then, the total

number of Type 2 S-equivalent pairs is at most Õ(nτ) with high probability.

We now proceed to prove Lemma 26.

Proof of Lemma 26. Note that by the statement of the lemma, u and v are related, |C(u)| ≤ τ , |C(v)| ≤ τ . We

additionally want to show that |D(u)⊕D(v)| ≤ τ and |A(u)⊕A(v)| ≤ τ . Without loss of generality, assume that

|A(u)⊕A(v)| ≥ τ + 1. Then, applying Chernoff bound, we conclude that with probability at least 1−O(1/n5)

there is a vertex x ∈ A(u) ⊕ A(v) that is included in S as well. This implies that u and v are not Type 2

S-equivalent. Taking union bound over all Type 2 S-equivalent pairs, which are at most n2 in number, we

conclude that with probability at least 1−O(1/n3) any Type 2 S-equivalent pair is also sometime-τ -similar.
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5 The Algorithm

When an edge (u, v) is inserted, the algorithm updates the newly formed strongly connected components, if

any. Additionally, the algorithm maintains a topological sort k of the strongly connected components. This

will be achieved by using canonical vertices as a proxy for the strongly connected components (see Section 2).

These canonical vertices will be maintained as an ordered list, and when we are required to reorder the strongly

connected components, the corresponding canonical vertices will be reordered. To achieve this, we follow the

basic framework of [BK20]. The algorithm to process the insertion of (u, v) proceeds in the following phases.

1. Phase 1. This phase is responsible for maintaining reachability information to and from S (using Lemma 2).

Additionally, in this phase, the algorithm uses this reachability information to update the sets Vi,j and to

handle the case where the new SCC formed by the insertion of (u, v) contains at least one vertex in S. If

the algorithm finds such an SCC, it terminates after Phase 1, i.e. it skips Phases 2 and 3.

2. Phase 2. This phase is responsible for handling small SCCs. In particular, it detects the case when (u, v)

creates a new SCC that does not contain any s ∈ S, as well as the case where (u, v) creates no new SCC.

The phase also links together the canonical vertices corresponding to this new SCC (if any).

3. Phase 3. This phase updates the topological order of the strongly connected components by reordering

canonical vertices. Note that even if (u, v) creates no SCCs, Phase 3 may need to do some reordering to

ensure that k remains a valid topological order.

In the main body of the paper, we will describe Phases 2 and 3 and the subroutines used in these phases.

The correctness of these subroutines can be found in Appendix A.2 and Appendix A.3 respectively. Phase 1 is

essentially the same as in the framework of [BC18], so we postpone the details to Appendix A.1.

5.1 Phase 1: Updating the partition {Vi,j} and Handling Large SCCs

In this section, we give an overview of Phase 1 and its guarantees. The full description is in the appendix.

Using Lemma 2, we can maintain reachability to and from every vertex in S in total time O(m|S|) over

all edge insertions. This allows us to maintain two additional piece of information. Recall the partition Vi,j

from Section 4, and note that every V (x) is determined entirely by AS(x) and DS(x). Thus, Phase 1 can use

the reachability information to/from S to maintain the partition Vi,j . Phase 1 can also use this reachability

information to detect any new SCCs that contain a vertex in S.

We now state these guarantees more formally. The following lemma is essentially identical to the guarantees

of [BC18], but is modified to handle SCCs.

Lemma 28 ([BC18]). Consider the insertion of edge (u, v). Phase 1 has the following guarantees:

(a) At the end of Phase 1, each set Vi,j is correct for the new version of the graph (the graph with edge (u, v)

inserted). The algorithm also updates the order of the strongly connected components so that they are

consistent with ≺∗.

(b) If the insertion of (u, v) creates a new SCC that contains a vertex in S, then Phase 1 detects the new SCC,

links the corresponding canonical vertices, and computes the topological order of the resulting SCCs. The

update procedure then terminates and does not continue to Phase 2 or 3.

(c) If the insertion of (u, v) does not create a new SCC that contains a vertex in S, then Phase 1 does not

create any new SCCs. In this case, after the end of Phase 1, the ordering k on the canonical vertices is

guaranteed to be a valid topological ordering of the canonical vertices in G \ {(u, v)}. The algorithm then

proceeds to Phases 2 and 3.

5.2 Phase 2: Detecting Small SCCs.

The algorithm enters Phase 2 only if the newly inserted edge (u, v) does not create a new SCC that contains

a vertex of S; otherwise the algorithm to process (u, v) terminates after Phase 1. We also remark that if the

algorithm enters Phase 2, then with high probability the size of the newly formed strongly connected component

(if one exists) is at most τ . This follows from an easy application of Chernoff bound: if the newly formed

component has size at least τ + 1, then with high probability, it contains a vertex of S, in which case the

algorithm terminates after Phase 1. Taking a union bound over all n2 edge insertions, we get the following:
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Observation 29. If the algorithm enters Phase 2 while processing an edge (u, v), then with high probability,

the new strongly connected components formed by the addition of (u, v) (if one exists) has size at most τ .

Additionally, recall that Phase 1 updates the partition set {Vi,j}, so we assume that once we enter Phase 2

this partition already corresponds to the graph G (Lemma 28(a))

Previous Work. Our Phase 2 will be similar to the cycle detection algorithm of [BK20], but we need to adapt

it to find the newly formed strongly connected component. Previous algorithms for finding SCCs such as the one

by [HKM+12], proceed by implementing the cycle detection algorithm, but running it only over the canonical

vertices. However, our algorithm will do a search over all vertices of the graph. We do this because sizes of the

SCCs will be relevant to the runtime of the algorithm, and they weren’t relevant in the case of [HKM+12].

We now give a brief outline of Phase 2: when an edge (u, v) is added to the graph, then the algorithm first

checks if k(Find(u)) < k(Find(v)). If this is the case, then there couldn’t have been an existing path from v to u

(due to Lemma 28(c)). As a result, a new component containing u and v could not be formed. So, the algorithm

doesn’t continue. To detect if a new component is formed and to find all the vertices of this component, the

algorithm does alternate steps of forward and backward search. For this purpose, it maintains sets Fa and Fd

(to do forward search), Ba and Bd (to do backward search). For the forward search, Fa and Fd are the vertices

that are alive (yet to be explored), and dead (already explored). Sets Ba and Bd are similarly defined for the

backward search. When we encounter a vertex while exploring in the forward direction, we add it to Fa. When

all neighbors of a vertex v ∈ Fa that are S-equivalent to v been added to Fa ∪ Fd, we add v to Fd. We add

vertices to Ba and Bd similarly. At all times, while exploring vertices in the forward direction, we want to stay

as close to v as possible, so we pick out a vertex x with minimum k(Find(x)) from Fa to explore next. Similarly,

while exploring in the backward direction, we want to stay as close to u as possible, so we pick out the vertex y

with maximum k(Find(y)) from Ba to explore next in the backward direction.

Algorithm 1. Explore-Forward(x)

1. Fa = Fa \ {x} and Fd = Fd ∪ {x}.

2. For x′ ∈ out(x) with V (x) = V (x′) do: // see Definition 24.

(a) If Find(x′) ∈ Ba ∪Bd then cycle = 1, and if x′ /∈ Fa ∪ Fd, then add x′ to Fa.

Algorithm 2. Explore-Backward(x)

1. Ba = Ba \ {x} and Bd = Bd ∪ {x}.

2. For x′ ∈ in(x) with V (x) = V (x′) do: // see Definition 24.

(a) If Find(x′) ∈ Fa ∪ Fd then cycle = 1, and if x′ /∈ Ba ∪Bd, then add x′ to Ba.

Algorithm 3. FindComponent(u, v). // Handles insertion of edge (u, v).

1. If k(Find(u)) < k(Find(v)), then return no.

2. Initialize cycle = 0 and min-heaps Fa = {v} , Ba = {u} , Fd = ∅, Bd = ∅.

3. If Find(u) = Find(v) or V (u) ̸= V (v) then return no.

4. While Fa ̸= ∅ and Ba ̸= ∅ do:

(a) Let x = argminx′∈Fa k(Find(x
′)).

(b) If k(Find(x)) > minz′∈Bd
k(Find(z′)) and cycle = 0, then exit loop.

(c) If k(Find(x)) > minz′∈Bd
k(Find(z′)) and cycle = 1, then exit loop.

(d) If k(Find(x)) = minz′∈Bd
k(Find(z′)) and cycle = 1, then exit loop.

(e) Else set status(x) = 1 and Explore-Forward(x).
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(f) Let y = argmaxy′∈Ba k(Find(y
′)).

(g) If k(Find(y)) < maxy′∈Fd
k(Find(y′)) and cycle = 0, then exit loop.

(h) If k(Find(y)) < maxy′∈Fd
k(Find(y′)) and cycle = 1, then exit loop.

(i) If k(Find(y)) = maxy′∈Fd
k(Find(y′)) and cycle = 1, then exit loop.

(j) Else set status(y) = 1 and Explore-Backward(y).

5. If cycle = 0, then return no.

6. If cycle = 1 then:

(a) If the algorithm ended in 4d (or 4i) then let z∗ = argminz′∈Bd
k(Find(z′)) (or z∗ =

argmaxz′∈Fd
k(Find(z′))). We then do a search as follows.

i. Do a DFS backwards from u, over the set of vertices x with status(x) = 1. Mark those that

reach some vertex in C(z∗) or C(v).

ii. Do a DFS forwards from v, over the set of vertices x with status(x) = 1. Mark those that

reach some vertex in C(v) or C(z∗).

(b) If the algorithm ended in 4c (or 4h), then do a forward DFS search from v, over the set of vertices

x with status(x) = 1, mark those that reach some vertex in C(u).

(c) Let z be a marked canonical vertex. For all canonical x ̸= z that is marked, Link(z, x).

We postpone the proof of correctness to the appendix. We briefly outline the proof of runtime.

Lemma 30. The total runtime of Phase 2 is O(
√

m3τ/n).

Proof Sketch. Suppose we have process edge et and let ft denote the size of Fd after FindComponent() has

finished terminated. We observe that |Bd| = Θ(ft) as well, since we do a balanced search. From Lemma 3

we conclude that the total update time of the algorithm over m edge insertions is O(m/n
∑m

t=1 ft). The goal

is to now bound
∑m

t=1 ft. Consider x ∈ Fd and y ∈ Bd after FindComponent() has finished processing et.

We show that (x, y) is a newly formed related-τ -similar pair or equivalent-τ -similar pair. This implies that∑m
t=1 f

2
t = Õ(nτ) (from Theorem 8). Using Cauchy-Schwarz, we know that

∑m
t=1 ft = Õ(

√
mnτ). Thus the

total runtime of Phase 2 is O(
√

m3τ/n).

5.3 Phase 3: Sorting the Canonical Vertices.

We enter this Phase only if there is no vertex of S in the newly created SCC, CN . After Phase 1 and Phase 2,

we know which canonical vertices have combined to give the newly formed strongly connected component. We

delete these canonical vertices from the ordered list, and show how to reorder the list so that a topological sort

on the canonical vertices is maintained.

To update the topological ordering of the canonical vertices, we follow the framework of [BK20]. We present

it here for completeness, modifying their algorithm slightly to account for the case where a cycle is created.

We will consider two cases, one where a new component is created and one where no new component is

created. Suppose no new component is created, and consider the sets Fd and Bd, from Property 40 and

Property 41 after we have processed edge (u, v). Since we do an ordered search, we know that all the vertices of

a given component appear in a continuous manner in Fd and Bd. Let Find(v), x1, · · · , xf be the canonical

vertices corresponding to the components appearing in Fd, with k(Find(v)) < k(x1) < · · · < k(xf ). Similarly,

let y1, y2, · · · , yb,Find(u) be the canonical vertices corresponding to the components appearing in Bd, with

k(y1) < k(y2) < · · · < k(yb) < k(Find(u)). We use the subroutine UpdateForward and UpdateBackward

to update the ordered list. This list only consists of canonical vertices that represent different components.

We now describe how to reorder the vertices. In [BK20] two cases are considered, the first case corresponds to when

the algorithm terminates in conditions: Ba = ∅ or maxx∈Ba k(Find(x)) < maxy∈Fd
k(Find(y)). For this case,

we use the subroutine UpdateForward(). The proof for the case when the algorithm terminates in conditions

Fa = ∅ or minx∈Fa
k(Find(x)) > miny∈Bd

k(Find(y)) is analogous (we use a subroutine UpdateBackward())

and we omit it here.
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Algorithm 4. UpdateForward()

1. Q = Fd.

2. x∗ = argmax {k(Find(x)) | x ∈ Q, x canonical}.

3. Q = Q \ C(x∗). // Since we are rearranging canonical vertices.

4. While Q ̸= ∅:

(a) x′ = argmaxx∈Q {k(Find(x))}.

(b) Q = Q \ C(x′).

(c) Insert-Before(Find(x′), x∗)

(d) x∗ = Find(x′).

5. y∗ = Find(v).

6. Q = Bd.

7. While Q ̸= ∅:

(a) y′ = argmaxy∈Bd
k(Find(y)).

(b) Q = Q \ C(y′).

(c) Insert-Before(Find(y′), y∗)

(d) y∗ = Find(y′).

We postpone the proof of correctness to the appendix. We give a proof of the runtime.

Lemma 31. The total runtime of Phase 3 is O(
√
mnτ).

Proof sketch. For each x ∈ Fd and y ∈ Bd, the algorithm UpdateForward() puts Find(x) and Find(y) in the

correct position in the ordered list. This takes time O(1) per vertex in Fd and Bd, giving a total runtime of

O(
√
mnτ).

When a new component CN is formed. If a new strongly connected component CN is formed, and it doesn’t

contain a vertex of S, then the algorithm still needs to reorder some components. Assume without loss of generality

that v is the canonical vertex of CN . We first proceed to delete from the ordered list, all canonical vertices

corresponding to the components that combined to form CN . We define x1, x2, · · ·xf ∈ Fd and y1, y2, · · · , yb ∈ Bd

as before except we exclude the canonical vertices that combined to form CN . Finally, if our FindComponent()

terminated in Ba = ∅ or maxx∈Ba k(Find(x)) ≤ maxy∈Fd
k(Find(y)), then we execute UpdateForward(), else

if FindComponent() terminated in Fa = ∅ or minx∈Fa
k(Find(x)) ≥ miny∈Bd

k(Find(y)), then we execute

UpdateBackward(). The proof of correctness can be found in Appendix A.3 and is the same as in the case

when there is no new strongly connected component formed.

Lemma 32. The total update time of our algorithm is Õ(m4/3).

Proof. The total time taken in Phase 1, 2 and 3 is at most Õ(mn/τ +
√
mnτ +

√
m3τ/n). Substituting τ = n/m1/3,

we get the desired bound of Õ(m4/3).
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A Omitted Proofs

A.1 Phase 1 of the Algorithm

For the sake of completeness, we restate the framework of [BC18] which allows us to update Vi,j so that they

are consistent with ≺∗. After addition of the edge (u, v), the algorithm first updates for each w ∈ V , the

set V (w). To do this, the algorithm will use Lemma 2. Using this lemma, the algorithm maintains A(s)

and D(s) for all s ∈ S in time O(m|S|), where |S| = Õ(n/τ) with high probability. So, when a vertex w is

added to A(s) for some s ∈ S, the algorithm adds s to AS(w). The set DS(w) is similarly updated. For each

vertex w, we maintain counters for |AS(w)| and |DS(w)|. Therefore, we know what the new partition Vi,j for w is.

After updating the partitions of the vertices, we also need to sort the canonical vertices within each Vi,j .

This done by moving the canonical vertices in the ordered list. To implement the algorithm, [BC18] main-

tain dummy nodes fi,j and bi,j for every partition Vi,j . It is ensured that for all canonical x ∈ Vi,j ,

k(fi,j) < k(x) < k(bi,j). The dummy nodes themselves are ordered in the following way: if Vi,j ≺∗ Vk,l

then, k(fi,j) < k(bi,j) < k(fk,l) < k(bk,l). We now describe their approach. Let Gt−1 denote the graph just

before the edge (u, v) is inserted, and let Gt denote that graph right after the edge (u, v) is inserted. For a canon-

ical vertex x, let V t−1(x) denote V (x) before the insertion of (u, v) and let V t(x) denote V (x) after the insertion

of edge (u, v). Additionally, they define sets UP(i, j) =
{
x | x is canonical and V t−1(x) ≺∗ V t(x) = Vi,j

}
and

DOWN(i, j) =
{
x | x is canonical and Vi,j = V t(x) ≺∗ V t−1(x)

}
. We implement these sets as max-heaps and

min-heaps respectively. Once these sets are determined we execute the following algorithms for each UP(i, j)

and DOWN(i, j).

Algorithm 5. Move-Up(i, j)

1. while UP(i, j) ̸= ∅ do:

(a) x = argmaxx′∈UP(i,j) k(x
′).

(b) Insert-After(x, fi,j).

(c) UP(i, j) = UP(i, j) \ {x}.

Algorithm 6. Move-Down(i, j)

1. while DOWN(i, j) ̸= ∅ do:

(a) x = argminx′∈DOWN(i,j) k(x
′).

(b) Insert-Before(x, bi,j).

(c) DOWN(i, j) = DOWN(i, j) \ {x}.
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We show that the ordered list output by the algorithm is a topological ordering of the strongly connected

components of Gt−1.

Lemma 33. Consider any edge (x, y) in Gt−1 such that at time t, C(x) ̸= C(y), then k(Find(x)) < k(Find(y))

in the list output by the algorithm.

Proof. We consider two cases: V t(Find(x)) ̸= V t(Find(y)). In this case, V t(Find(x)) ≺∗ V t(Find(y)), and

while updating {Vi,j}, Find(x) and Find(y) are placed between the right placeholders, so k(Find(x)) <

k(Find(y)). Suppose V t(x) = V t(y) = Vi,j . Since (x, y) ∈ Gt−1, k(Find(x)) < k(Find(y)) in at time t− 1. We

consider the following three cases.

1. Find(x),Find(y) ∈ UP(i, j). In this case, Move-Up(i, j) puts Find(x), before Find(y), since Move-Up()

doesn’t change the relative ordering of the canonical vertices in Up(i, j).

2. Find(x),Find(y) ∈ DOWN(i, j). In this case, Move-Down(i, j) puts Find(x) before Find(y), since

Move-Down() doesn’t change the relative ordering of the canonical vertices in Down(i, j).

3. Find(x) ∈ Up(i, j) and Find(y) ∈ Down(i, j). In this case, the algorithm puts Find(x) after fi,j and

Find(y) before bi,j . So, k(Find(x)) < k(Find(y)).

As discussed before, in Phase 1, while updating A(s) and D(s) for all s ∈ S, we are also able to detect if

the new strongly connected component (if any) contains a vertex of S. If the newly formed strongly connected

component has this property, then we are able to update all its vertices correctly. We briefly discuss how this is

done. Let t be the time at which the edge (u, v) is added to the graph.

1. Consider a vertex x ∈ D(s) before time t that was added to A(s) for some s ∈ S while updating A(s) at

time t, then mark Find(x) and Find(s). Similarly, if a vertex x ∈ A(s) before time t was added to D(s)

at time t for some s ∈ S while updating D(s), then mark Find(x) and Find(s).

2. Let z be an arbitrary marked canonical vertex. For all canonical vertices x ̸= z that are marked, Link(z, x).

Delete all x ̸= z that are marked from the ordered list.

Note that for a vertex s ∈ S, Find(s) is marked if and only if there is a newly formed strongly connected

component, CN containing C(s). Let C1, · · · , Cr be the components that combine to form CN , and let x1, · · · , xr

be the corresponding canonical vertices. Without loss of generality, assume C1 is the component containing a

vertex from S, and let this vertex be s. Observe that x2, · · · , xr are related to s before the addition of edge

(u, v). So, xi ∈ A(s) (or D(s)) before the addition of edge (u, v), and after the addition of edge (u, v), xi ∈ D(s)

(or A(s)) as well. This implies that all xi’s will be marked, and will be linked. Moreover, note that no canonical

vertex y /∈ {x1, · · · , xr} is marked since at least one of these is true at time t: y /∈ A(s) or y /∈ D(s). From this

diswe conclude that CN is updated correctly after the insertion of (u, v).

Finally, we observe that the newly strongly connected component CN contains a vertex s ∈ S, then the

reordering procedure done by Move-Up() and Move-Down() gives a topological sort of the canonical vertices

of the current graph. Towards proving this we consider the following cases.

1. Consider edge (x, y) such that C(x) ̸= C(y) and C(x) ̸= CN , C(y) ̸= CN at time t. In this case, we know

from Lemma 33 that k(Find(x)) < k(Find(y)).

2. Consider edge (x, y) such that C(x) ̸= C(y), and C(x) = CN at time t. In this case, observe that

AS(x) ⊂ AS(y). Additionally, we know that s ∈ DS(x) but s /∈ DS(y). This implies that V t(Find(x)) ≺∗

V t(Find(y)), and therefore, k(Find)(x) < k(Find(y)).

3. Consider edge (x, y) such that C(x) ̸= C(y) and C(y) = CN at time t. This is analogous to the case above.

In the above three cases, we have accounted for all types of edges, and this proves that we have a topological

sort of the canonical vertices.

Lemma 34. The total runtime of Phase 1 over m edge insertions is O(m·n
τ ).
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Proof. For each vertex x, the number of times V (x) can change is O(n/τ). For each vertex that changes its

bucket, moving it to the correct bucket using Move-Up() and Move-Down() routine takes time O(1) per

vertex. This leads to a total runtime of O(n
2
/τ) over all edge insertions. Additionally, we maintain A(s) and

D(s) for all s ∈ S, this takes time O(m·n/τ) over all insertions. We can mark all vertices of CN and link them in

time O(m·n/τ) time over insertion of all edges. This proves our claim.

A.2 Phase 2 of the Algorithm

In this case, we prove correctness of Phase 2. We first start with proving some basic properties of FindCompo-

nent().

Basic Properties of the Algorithm. We will now show that Phase 2 outputs no if and only if a new

component is not formed. In addition, it also links all the canonical vertices of the newly formed component

correctly. Before we do this, we state some properties of the algorithm.

Property 35. Sets Fd and Fa are mutually exclusive, and so are sets Bd and Ba.

Proof. A vertex is added to Fd only after it is removed from Fa. Similarly, a vertex is added to Bd after it is

removed from Ba.

Property 36. The variable cycle = 1 if and only if there exists x ∈ Ba ∪ Bd and y ∈ Fa ∪ Fd such that

Find(x) = Find(y).

Proof. We set the variable cycle in Explore-Forward and Explore-Backward. In the former case, it is

done when we are forward exploring a vertex x′ and x′ ∈ Fa ∪ Fd or is added to it Fa, and Find(x′) ∈ Bd ∪Ba

already. In the latter case it is done when we are backward exploring a vertex x′ and x′ ∈ Ba ∪Bd or is added

to Ba, and Find(x′) ∈ Fd ∪ Fa already.

To prove the other direction, suppose without loss of generality that there exists x′ ∈ Fa∪Fd and y′ ∈ Ba∪Bd = B

such that Find(x′) = Find(y′). Suppose x′ is added to Fa after it was added to Ba ∪Bd, then, while adding x′

to Fa, the algorithm will check condition 2a of Explore-Forward and update cycle. The case where x′ is

added to Ba after it is added to Fa is also analogous.

Property 37. At all times miny∈Bd
k(Find(y)) > maxz∈Fd

k(Find(z)).

Proof. This is true when the sets are empty at time t = 0. Suppose the claim is true till time t− 1 and first

becomes false at time t. There are two possibilities.

1. A vertex x is explored forward and is added to Fd. By inductive hypothesis, the claim held before time t.

This implies that at time t, k(Find(x)) ≥ miny∈Bd
k(Find(y)). We show that the algorithm would not

have added x to Fd. To see this consider two cases: If k(Find(x)) > miny∈Bd
k(Find(y)), then when x is

explored, either condition 4c or 4b is encountered, and we exit the loop instead of adding x to Fd. On

the other hand, another possibility is that k(Find(x)) = miny∈Bd
k(Find(y)). In this case, we know that

cycle = 1 from Property 36. In this case, we encounter condition 4d, which asks us to exit the loop

instead of adding x to Fd.

2. A vertex y is explored backward and added to Bd. The proof is analogous to the case above.

This completes our proof.

From Property 37, we have the following property.

Property 38. Let x ∈ Fd and y ∈ Bd, then Find(x) ̸= Find(y).

Property 39. If cycle = 0, then all four sets Fa, Ba, Fd, Bd are pairwise mutually exclusive.

Proof. From Property 38, we know that Fd and Bd are pairwise mutually exclusive. From Property 35, we

conclude that Fa and Fd are pairwise mutually exclusive, and that Ba and Bd are pairwise mutually exclusive.

From Property 36, we conclude that if cycle = 0, then, Fa is disjoint from Ba ∪ Bd and Ba is disjoint from

Fa ∪ Fd. This concludes our proof.
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Property 40. Consider two vertices x, y such that V (x) = V (y). Suppose there is a path from v to x, and a

path from v to y. If k(Find(x)) < k(Find(y)), and y ∈ Fd, then x ∈ Fd as well.

Property 41. Consider two vertices x, y such that V (x) = V (y). Suppose there is a path from x to u, and a

path from y to u. If k(Find(x)) < k(Find(y)), and x ∈ Bd, then y ∈ Bd as well.

A.2.1 Correctness of the Algorithm.

We now show correctness of our algorithm. To do this, we will first show that the algorithm correctly determines

if a new strongly connected component has been formed. Then, we show that if we are in the case where a new

component has been formed, then the algorithm correctly updates this component.

Lemma 42. The algorithm outputs no if and only if there is no newly formed strongly connected component in

the graph.

Proof. To prove this statement, we analyze different stopping conditions:

1. cycle = 1. As discussed in Property 36, we note that there exists x ∈ F and y ∈ B such that

Find(x) = Find(y). This implies that the component containing x and y, has a path to u, and is also

reachable from v. So, there is a newly formed strongly connected component, and in this case, the algorithm

doesn’t output no.

2. cycle = 0. We show that there is no new strongly connected component formed. We analyze different

cases.

(a) Fa = ∅. Suppose the graph contains a newly formed strongly connected component. This implies that

there is a v to u path, denoted Pvu. Note that v ∈ Fa ∪ Fd = Fd, u ∈ Ba ∪ Bd. Since cycle = 0,

from Property 39, we conclude that u /∈ Fd. So, there is a vertex on Pvu that doesn’t belong in Fd.

Let x be the first vertex on this path such that x /∈ Fd. Consider the predecessor p(x) of x on this

path. Note that p(x) ∈ Fd. This implies that x ∈ Fd ∪ Fa = Fa. This is a contradiction to the fact

that Fa = ∅.
(b) Ba = ∅. The argument in this case is analogous to the case above.

(c) minx∈Fa k(Find(x)) > miny∈Bd
k(Find(y)). Suppose there is a newly formed strongly connected

component. This implies there is a path Pvu from v to u. Suppose there is a vertex x∗ on Pvu that lies

in Fa. Note that k(Find(x∗)) > miny∈Bd
k(Find(y)). This implies that x∗ ∈ Bd from Property 41.

This contradicts Fa ∩Bd = ∅ implied by Property 39.

We now are left to show that there is a vertex x∗ on the path Pvu that lies in Fa. If v ∈ Fa, then we are

done. Otherwise, we know that v ∈ Fd. As before, note that u ∈ Bd∪Ba, and u /∈ Fd. This is because

of Property 39. Let x′ be the first vertex on Pvu that doesn’t lie in Fd. Consider the predecessor p(x′)

of x′ on Pvu, p(x
′) ∈ Fd (p(x′) lies on Pvu because x′ ̸= v). This implies x′ ∈ Fa ∪ Fd = Fa.

(d) maxx∈Ba
k(Find(x)) < maxy∈Fd

k(Find(y)). This argument is analogous to the case above.

We now prove some claims towards showing that the strongly connected components are updated correctly.

Claim 43. Suppose x is a canonical vertex that is linked by FindComponent(), then x ∈ CN , where CN is

the new strongly connected component.

Proof. Note that z∗, is reachable from v, and has a path to u as well. DFS marks and links only vertices that lie

on some v − u path, or a v − z∗ path, or a z∗ − u path. All these vertices are contained in the newly formed

strongly connected component.

Lemma 44. Suppose the algorithm ends the loop due to the condition minx∈Fa
k(Find(x)) = miny∈Bd

k(Find(y)),

then for all z ∈ V , at least one of these three statements if true.

1. Find(z∗) = Find(z), where z∗ = argminx∈Bd
k(Find(x)).

2. The newly formed strongly connected component does not contain z.

3. z ∈ Fd ∪Bd.
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Proof. Suppose there is z such that Find(z) ̸= Find(z∗), but z lies in the newly created strongly connected

component. Note that k(Find(z)) ̸= k(Find(z∗)), we want to show that z ∈ Fd ∪ Bd. This brings us to the

following two cases:

1. k(Find(z)) > k(Find(z∗)). In this case, since z is in the newly created strongly connected component,

there is a path from z to u. So, application of Property 41, z ∈ Bd.

2. k(Find(z)) < k(Find(z∗)). Suppose z /∈ Fd. Consider a v− z path Pvz (such a path exists since z belongs

in the newly created strongly connected component). We claim that there is a vertex on Pvz that lies in Fa.

If v ∈ Fa, then we are done. Else, v ∈ Fd. We conclude that there is a vertex on Pvz that lies in Fd. Let a be

such a vertex that is farthest from v. Note that a ̸= z, so there is a successor of a on Pvz. Let this successor be

s(a). Note that s(a) ∈ Fd ∪Fa = Fa. This implies that k(Find(s(a))) ≤ k(Find(z)) < k(Find(z∗)). Since

s(a) ∈ Fa, we know that minx∈Fa k(Find(x)) < k(Find(z∗)) = miny∈Bd
k(Find(y)). This contradicts the

statement of the lemma.

This implies that z ∈ Bd ∪ Fd, which proves our claim.

We have the following mirror lemma.

Lemma 45. Suppose the algorithm ends the loop due to the condition maxx∈Ba
k(Find(x)) = maxy∈Fd

k(Find(y)),

then for all z ∈ V , at least one of these three statements if true.

1. Find(z∗) = Find(z), where z∗ = argmaxx∈Fd
k(Find(x)).

2. The newly formed strongly connected component does not contain z.

3. z ∈ Fd ∪Bd.

To show that all vertices that belong in the newly created strongly connected component CN are linked, it is

sufficient to show that for all vertices x ∈ CN , either status(x) = 1 or x ∈ C(z∗).

Corollary 46. Let CN be the newly formed strongly connected component. From Lemma 44 and Lemma 45, we

conclude that if the algorithm concludes in 4i or 4d, then for all x ∈ CN , either x ∈ Fd ∪Bd, which means that

status(x) = 1, or x ∈ C(z∗). This implies that the algorithm will link Find(x) in the connected component it

outputs.

Now, we are concerned with the case when the algorithm doesn’t terminate in conditions 4i or 4d. Towards

this, we prove the following lemma:

Lemma 47. Let CN be the newly created strongly connected component and suppose the algorithm doesn’t

terminate in 4i or 4d, then for all x ∈ CN , status(x) = 1.

Proof. Suppose there is a vertex z such that z ∈ CN , but status(z) = 0, and the algorithm doesn’t terminate in

4i or 4d. We will argue that if this is true, then the algorithm doesn’t terminate. We first show that Fa ̸= ∅ and

Ba ̸= ∅. Consider the path Pvzu. If v ∈ Fa then we are done. So, we assume that v ∈ Fd. Note that Pvz contains

a vertex that is not in Fd (since z is such a vertex, because status(z) = 0). Let f be the first such vertex on

this path. Consider the predecessor of f , called p(f). We know that p(f) ∈ Fd. So, f ∈ Fd ∪ Fa = Fa. Similarly,

we can show that there exists a vertex on the path Pzu, called b such that b ∈ Ba. We further observe that

k(Find(f)) ≤ k(Find(z)) ≤ k(Find(b)). We now show that the algorithm cannot terminate in other conditions

as well. Towards this, we examine two possibilities.

1. k(Find(f)) < k(Find(b)). In this case, note that we have the following set of inequalities.

(a) minx∈Fa
k(Find(x)) ≤ k(Find(f)) < k(Find(b)) ≤ miny∈Bd

k(Find(y)). The first inequality is

due to the fact that f ∈ Fa, and the final inequality is due to the fact that if k(Find(b)) >

miny∈Bd
k(Find(y)), then b ∈ Bd (b ∈ CN and using Property 41). So, the algorithm doesn’t

terminate in condition 4c or 4b.

(b) maxx∈Fd
k(Find(x)) ≤ k(Find(f)) < k(Find(b)) ≤ maxy∈Ba

k(Find(y)). The first inequality is

due to the fact that if k(Find(f)) < maxx∈Fd
k(Find(x)), then f ∈ Fd as well (f ∈ CN and using

Property 40). The second inequality is due to the fact that b ∈ Ba. So, the algorithm doesn’t

terminate in condition 4h or 4g.
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2. k(Find(f)) = k(Find(b)). We again consider two set of inequalities.

(a) minx∈Fa k(Find(x)) ≤ k(Find(f)) = k(Find(b)) ≤ miny∈Bd
k(Find(y)).

(b) maxx∈Fd
k(Find(x)) ≤ k(Find(f)) = k(Find(b)) ≤ maxy∈Ba

k(Find(y)).

Since we don’t terminate in 4d or 4i, one of the inequalities in each of 2a and 2b are strict. On the other

hand, if these inequalities are strict, then we don’t terminate in 4c or 4b or 4h or 4g. This is a contradiction.

Lemma 48. Let CN be the new strongly connected component formed due the the addition of edge (u, v).

Then, a canonical vertex x is linked by FindComponent() if and only if x is present in CN .

Proof. From Claim 43 we conclude that all canonical vertices that are linked are indeed present in the newly

formed strongly connected component. From Corollary 46 and Lemma 47 we conclude that all the vertices in

the newly formed strongly connected components are linked.

A.2.2 Runtime of Phase 2

The following lemma is implied by the fact that we alternate between forward and backward searches.

Lemma 49. Let edge et be inserted at time t, and consider sets Fd and Bd after et has been processed, then

|Fd| − 1 ≤ |Bd| ≤ |Fd|+ 1.

Definition 50. Let el be the edge inserted at time l, and suppose fl denotes the number of vertices in Fd, after

el is processed.

Note that the the total runtime of the algorithm is O(m/n
∑m

l=0 fl) (due to Lemma 3). To bound this sum,

we first show the following lemma:

Lemma 51.
∑m

l=0 f
2
l = Õ(nτ).

Proof. Consider Fd and Bd after we have we have processed the edge et. By Lemma 49, we know that both

these sets have size Θ(ft). To prove the lemma, we show that for every x ∈ Fd and y ∈ Bd, the ordered pair

(x, y) is either a new related-sometime-τ -similar pair or equivalent-sometime-τ -similar pair. We consider the

following two cases.

1. Let t be a time during which a strongly connected component is not formed. Suppose (u, v) is the edge

that is processed at time t, and let G be the graph after the addition of edge (u, v). Note that after

Phase 1, the ordered list of strongly connected components corresponds to a topological ordering of the

strongly connected components of G \ {(u, v)} (see Lemma 28). Consider x ∈ Fd and y ∈ Bd, from

Property 37, we know that k(Find(x)) < k(Find(y)). Note that due to Lemma 28, there is no path

from y to x in G \ {(u, v)}. Further, there can’t be a path from x to y, since a new strongly connected

component containing them isn’t created by the addition of (u, v). This implies that x and y were not

related before time t. On the other hand, at time t, they are S-equivalent of Type 2, since x and y are

related, V (x) = V (y) and |C(x)| ≤ τ, |C(y)| ≤ τ (from Observation 29 and Lemma 25). This implies that

with high probability, they are related-sometime-τ -similar (from Lemma 26, and using the fact that a new

component is not formed). So, the number of newly formed sometime-τ -similar pairs at time t is f2
t .

2. Next, we consider times t when a new strongly connected component is formed. We recall that since we

are in Phase 2, the size of the newly formed strongly connected component CN is at most τ . To analyze

this scenario, we can therefore, condition on Lemma 26. We consider the following cases.

(a) When x ∈ Fd, y ∈ Bd and x, y /∈ CN . From Property 37 we conclude that k(Find(x)) < k(Find(y))

before the insertion of (u, v). Consequently from Lemma 28, we conclude there couldn’t have been a

path from y to x in G \ {(u, v)}. Moreover, if there was a path from x to y, then x, y ∈ CN , since

the path from v to x, x to y, y to u, combined with (u, v) would have given us a cycle. So, in this

case, x and y were not related before the insertion of (u, v). After the insertion of (u, v), x and y

have become a related-τ -similar pair.
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(b) When x ∈ Fd, y ∈ Bd and x ∈ CN , y /∈ CN . As before, k(Find(x)) < k(Find(y)), which tells us

that there is no path from y to x in G \ {(u, v)} (because of Lemma 28). Similar to the argument

above, if there was a path from x to y in G \ {(u, v)}, then this path combined with the path from v

to x, y to u and the edge (u, v) would have implied that x ∈ CN as well. So, x and y were not related

before the insertion of (u, v) and were therefore, not a τ -similar pair. They become a related-τ -similar

pair after the insertion of (u, v).

(c) When x ∈ Fd, y ∈ Bd and x /∈ CN , y ∈ CN . Similar to the above case, we can argue that x and y

were not τ -similar before the insertion of (u, v) but are related-τ -similar now.

(d) When x ∈ Fd, y ∈ Bd and x ∈ CN , y ∈ CN . From Property 38, we can conclude that x and y were

not equivalent-sometime-τ -similar before the insertion of (u, v), but are equivalent-sometime-τ -similar

now since |CN | ≤ τ .

From the above cases, we can conclude that after processing an edge (u, v), if we consider x ∈ Fd, y ∈ Bd, then

we can charge them to a equivalent-sometime-τ -similar pair or related-sometime-τ -similar pair (x, y), which

wasn’t charged before. Since the total number of sometime-τ -similar pairs are at most Õ(nτ), we conclude that∑m
t=0 f

2
t = Õ(nτ).

We now show an upper bound on the runtime of Phase 2.

Lemma 52.
∑m

l=0 fl = O(
√
mnτ). The total runtime of phase 2 is O(

√
m3τ/n).

Proof. We first note from Lemma 3, that the degree of every vertex is O(m/n). The runtime of the algorithm is

O(m/n
∑m

l=0 fl). Applying Cauchy-Schwarz to Lemma 51, we note that
∑m

l=0 fl = O(
√
mnτ). This gives us the

required bound on the runtime of Phase 2.

A.3 Phase 3 of the Algorithm

We show that Update-Forward() correctly orders the canonical vertices in a topological order.

Correctness. Let Sf = {x canonical | k(x) < k(xf )} \ Fd and Sb = {y canonical | k(y) > k(xf )} \ Bd. We

first have the following observation:

Observation 53. Consider any canonical x, y ∈ Sf ∪ Sb. If k(x) < k(y) before the reordering of canonical

vertices, then k(x) < k(y) after the reordering.

Observation 54. Consider any canonical x, y ∈ Fd (or canonical x, y ∈ Bd). If k(x) < k(y) before reordering,

then k(x) < k(y) after the reordering as well since Update-Forward() does not change the relative order of

the canonical vertices in Fd. Similarly, it doesn’t change the relative order of canonical vertices in Bd.

Observation 55. There is no edge (x, y) ∈ G \ {(u, v)} such that x ∈ Bd and y ∈ Fd (see Property 37

and Lemma 28). There is no edge (x, y) ∈ G \ {u, v} such that x ∈ Fd, y ∈ Bd since we are dealing with

the case when no new components are formed. Therefore, the only edge between Fd and Bd is (u, v), and

k(Find(u)) < k(Find(v)) after reordering.

Lemma 56. Consider any edge (x, y) in G between sets Fd ∪Bd and Sb ∪ Sf , then after the run of Update-

Forward(), k(Find(x)) < k(Find(y)).

Proof. We consider the following cases. Throughout the proof, it will be useful to refer to Figure 3.

1. Edges between Fd and Sf . Consider (x, y) such that Find(x) ∈ Sf and y ∈ Fd, then k(Find(x)) <

k(Find(y)) after reordering. We now consider edges (x, y) such that x ∈ Fd and Find(y) ∈ Sf . We

examine two cases.

(a) When V (x) ̸= V (y). In this case from Lemma 28, we conclude that k(xf ) < k(y), thus contradicting

the fact that Find(y) ∈ Sf .

(b) When V (x) = V (y). In this case, we know that y ∈ Fa, and therefore, k(xf ) < k(Find(y)), which

contradicts the fact that Find(y) ∈ Sf .

2. Edges between Fd and Sb. Consider x ∈ Fd and Find(y) ∈ Sb, k(Find(x)) < k(Find(y)) both before

and after the reordering procedure.
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3. Edges between Sf and Bd. Consider Find(x) ∈ Sf and y ∈ Bd, k(Find(x)) < k(Find(y)) both before

and after the reordering procedure.

4. Edges between Sb and Bd. Consider edge (x, y) with x ∈ Bd and Find(y) ∈ Sb, k(Find(x)) < k(Find(y))

after reordering the vertices. We now show that there are no edges (x, y) such that Find(x) ∈ Sb and

y ∈ Bd. We consider two cases.

(a) When V (x) = V (y). In this case, x ∈ Ba (since when we added y toBd, we made sure all in-neighbours

x′ of y such that V (x′) = V (y) were present inBa∪Bd) and k(xf ) < k(Find(x)) < k(y1). SinceBa ̸= ∅,
the algorithm terminates in the condition maxz∈Ba

k(Find(z)) < maxw∈Fd
k(Find(w)) = k(xf ). On

the other hand, k(Find(x)) ≤ maxz∈Ba
k(Find(z)). This implies that k(Find(x)) < k(xf ), which is

a contradiction.

(b) When V (x) ̸= V (y). Since V (y) = V (xf ), we conclude that V (xf ) ̸= V (x) as well. Additionally,

since (x, y) is an edge, this implies that V (x) ≺∗ V (xf ), and by Lemma 28 we conclude that

k(Find(x)) < k(xf ), thus contradicting the fact that Find(x) ∈ Sb.

Finally, we consider the case when there is a newly formed strongly connected component. In this case,

we delete all the non-canonical vertices of the newly formed strongly connected component in the ordered list

and run UpdateForward when the algorithm terminates in conditions Ba = ∅ or maxx∈Ba
k(Find(x)) ≤

maxy∈Fd
k(Find(y)). Without loss of generality, assume that v is the canonical vertex of the new strongly

connected component. Let v, x1, x2, · · · , xf be the canonical vertices present in Fd after processing (u, v) and

deleting the non-canonical vertices of the newly formed component, such that k(v) < k(x1) < · · · < k(xf ).

Similarly, let y1, y2, · · · , yb be the canonical vertices in Bd with k(y1) < k(y2) < · · · < k(yb). By Property 37, we

know that k(xf ) < k(y1). We now briefly describe why the same algorithm is correct for this case as well. We define

sets Sf and Sb as before: Sf = {x canonical | k(x) < k(xf )} \ Fd and Sb = {y canonical | k(y) > k(xf )} \Bd.

1. Edges between Fd and Bd. Note that there are no edges of the type (w, z) such that Find(w) = xi for

some i and Find(z) = yj for some j The presence of such an edge would imply that these vertices would be

a part of the newly formed component. Addition of the edge (u, v), implies that yb < v in the topological

ordering of the new graph. So, the new ordering of the canonical vertices, y1, y2, · · · , yb, v, x1, · · · , xf is

valid for edges between these two sets.

2. Edges between vertices of Sb ∪ Sf . Consider any x, y such that Find(x),Find(y) ∈ Sf ∪ Sb. If

k(Find(x)) < k(Find(y)) before reordering the canonical vertices, then the same is true after reordering.

3. Consider any x, y ∈ Fd (or x, y ∈ Bd). If k(Find(x)) < k(Find(y)) before reordering, then k(Find(x)) <

k(Find(y)) after the reordering as well.

4. Edges between Fd and Sf . Consider (x, y) such that Find(x) ∈ Sf and y ∈ Fd, then k(Find(x)) <

k(Find(y)) after reordering. We now consider edges (x, y) such that x ∈ Fd and Find(y) ∈ Sf . We

examine two cases.

(a) When V (x) ̸= V (y). In this case from Lemma 28, we conclude that k(xf ) < k(y), thus contradicting

the fact that Find(y) ∈ Sf .

(b) When V (x) = V (y). In this case, we know that y ∈ Fa, and therefore, k(xf ) < k(Find(y)), which

contradicts the fact that Find(y) ∈ Sf .

5. Edges between Fd and Sb. Consider x ∈ Fd and y ∈ Sb, k(Find(x)) < k(Find(y)) both before and

after the reordering procedure.

6. Edges between Sf and Bd. Consider x ∈ Sf and y ∈ Bd, k(Find(x)) < k(Find(y)) both before and

after the reordering procedure.

7. Edges between Sb and Bd. Consider edge (x, y) with x ∈ Bd and Find(y) ∈ Sb, k(Find(x)) < k(Find(y))

after reordering the vertices. We now show that there are no edges (x, y) such that Find(x) ∈ Sb and

y ∈ Bd.
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Figure 3: The algorithm UpdateForward places all vertices of Fd (in orange) and Bd (in green) immediately

before xf . The edges between Sf and Fd (in purple), between Bd and Sb (in green), between Sf and Bd (in red)

and, between Fd and Sb (in blue) are consistent with the final ordering.

(a) When V (x) = V (y). Assume there is such an edge, then in this case, x ∈ Ba and k(xf ) <

k(Find(x)) < k(y1). Since Ba ̸= ∅, the algorithm terminates in the condition maxz∈Ba
k(Find(z)) ≤

maxw∈Fd
k(Find(w)) = k(xf ). On the other hand, k(Find(x)) ≤ maxz∈Ba

k(Find(z)). This implies

that k(Find(x)) ≤ k(xf ), which contradicts the fact that Find(x) ∈ Sb.

(b) When V (x) ̸= V (y). Since V (y) = V (xf ), we conclude that V (xf ) ̸= V (x) as well. Additionally,

since (x, y) is an edge, this implies that V (x) ≺∗ V (xf ), and by Lemma 28 we conclude that

k(Find(x)) < k(xf ), thus contradicting the fact that Find(x) ∈ Sb.

Theorem 57. The topological sort algorithm only has to place O(|Fd|) vertices in their correct position in the

ordered list. This takes O(1) time per element. So, the total runtime is O(
√
mnτ).

Total Runtime. Combining the runtimes of Phase 1, 2 and 3, we get a total runtime of O(
√

m3τ/n +
√

mn/τ).

Substituting τ = n/m1/3 we get the desired bound of O(m4/3).
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