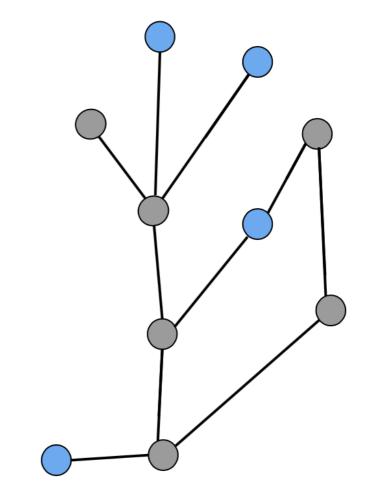
Ruling Sets in Random Order and Adversarial Streams

Sepehr Assadi Rutgers University Aditi Dudeja Rutgers University

Ruling Sets

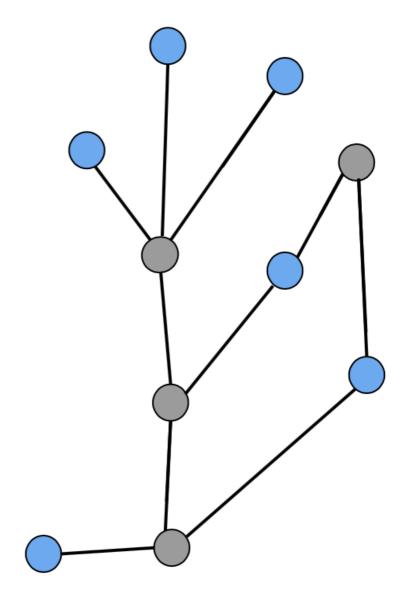
(α, β) -Ruling Sets:

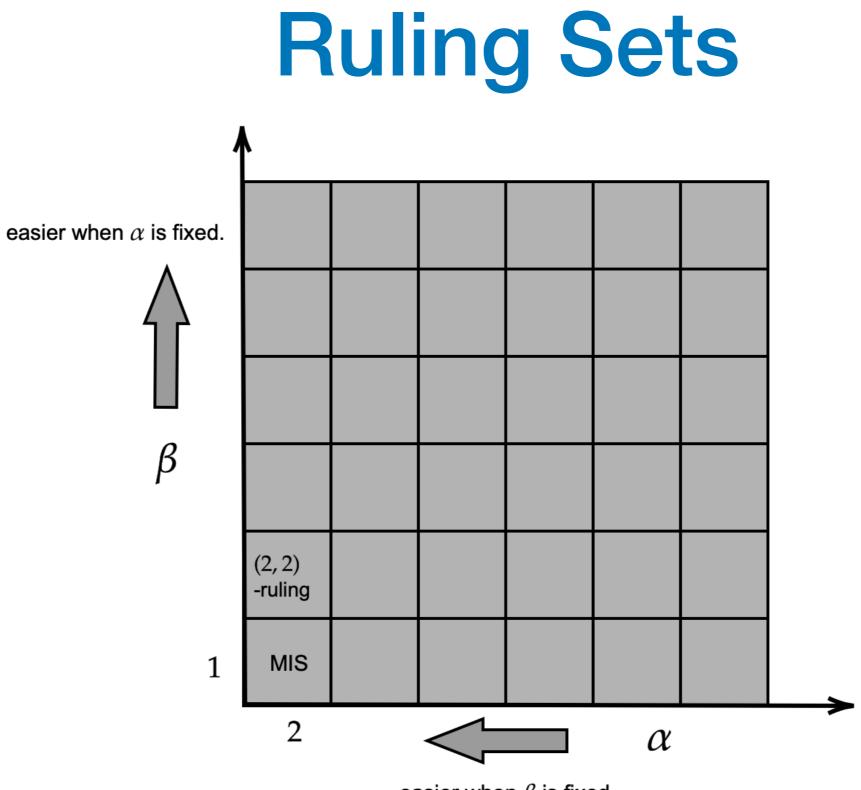
- The distance between each pair of vertices in the ruling set is at least α .
- Each node not in the ruling set is at a distance at most β from some node in the ruling set.



(2,1)-Ruling Set = MIS

- Independent Set: The vertices of the set aren't adjacent to each other.
- Maximality: We cannot add vertices without violating independence.



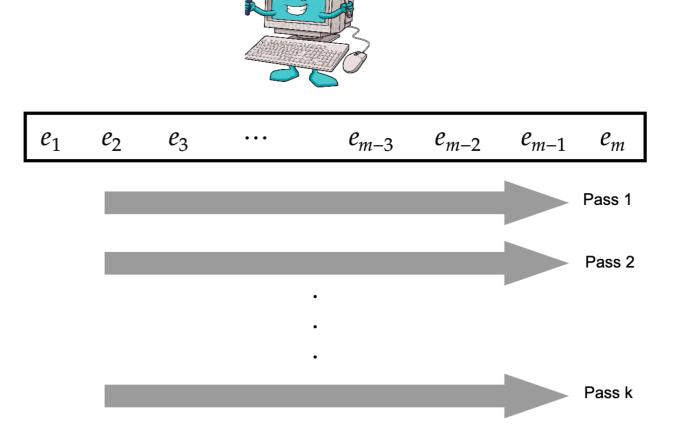


easier when β is fixed.

Graph Streaming

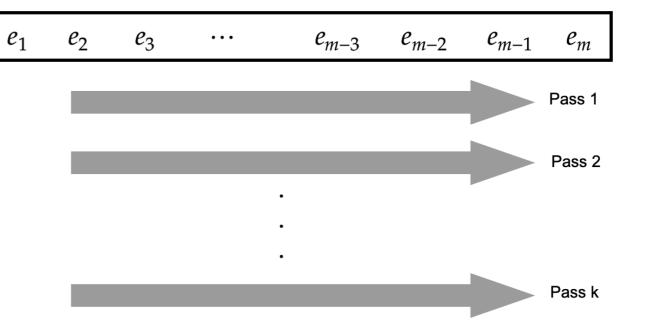
Graph
$$G = (V, E)$$
:

- Known vertices: $V = \{v_1, v_2, \dots, v_n\}$
- Unknown edges: $E = \langle e_1, e_2, \cdots, e_m \rangle$



Random-Order Streams

- The adversary can choose the graph.
- The edges $\langle e_1, e_2, \dots, e_m \rangle$ arrive in a **random order**.



Results

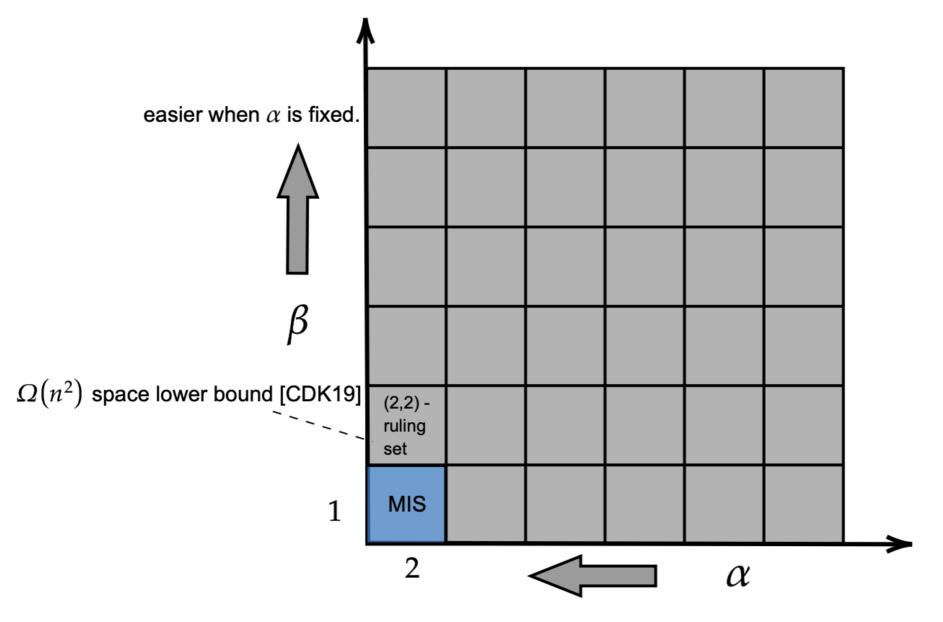
Random-Order Streams:

► An Õ(n) - space streaming algorithm for (2,2) - ruling sets.

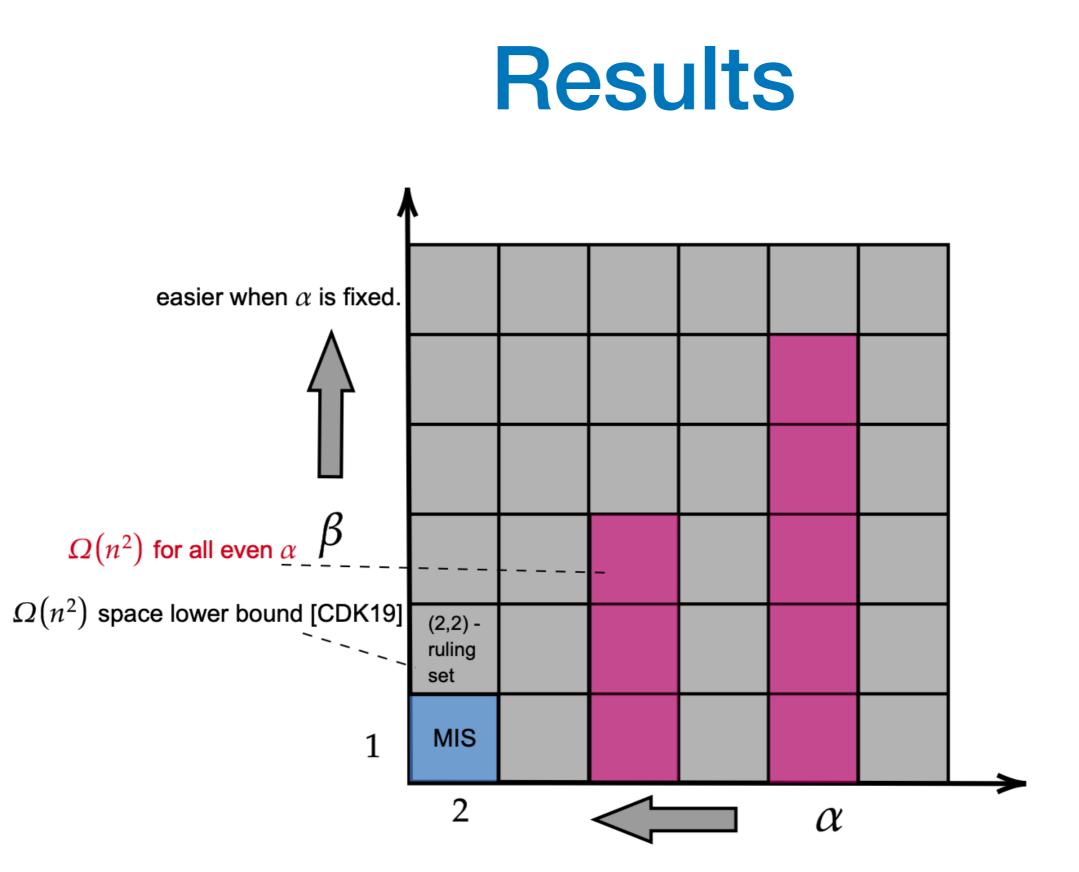
Adversarial Streams:

- ► An Õ(n^{4/3}) space streaming algorithm for (2,2) ruling sets.
- An $\Omega(n^2)$ space lower bound for any streaming algorithm computing a $(\alpha, \alpha 1)$ ruling set for even α .

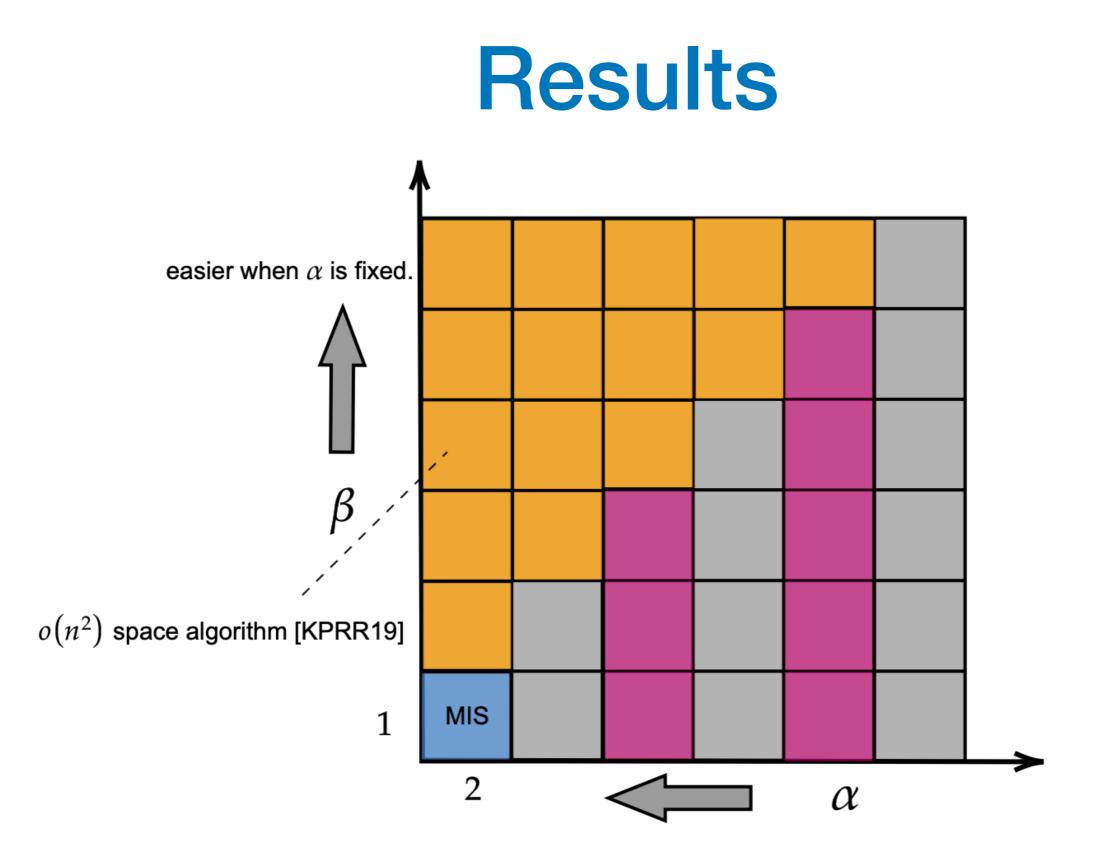
Results



easier when β is fixed.

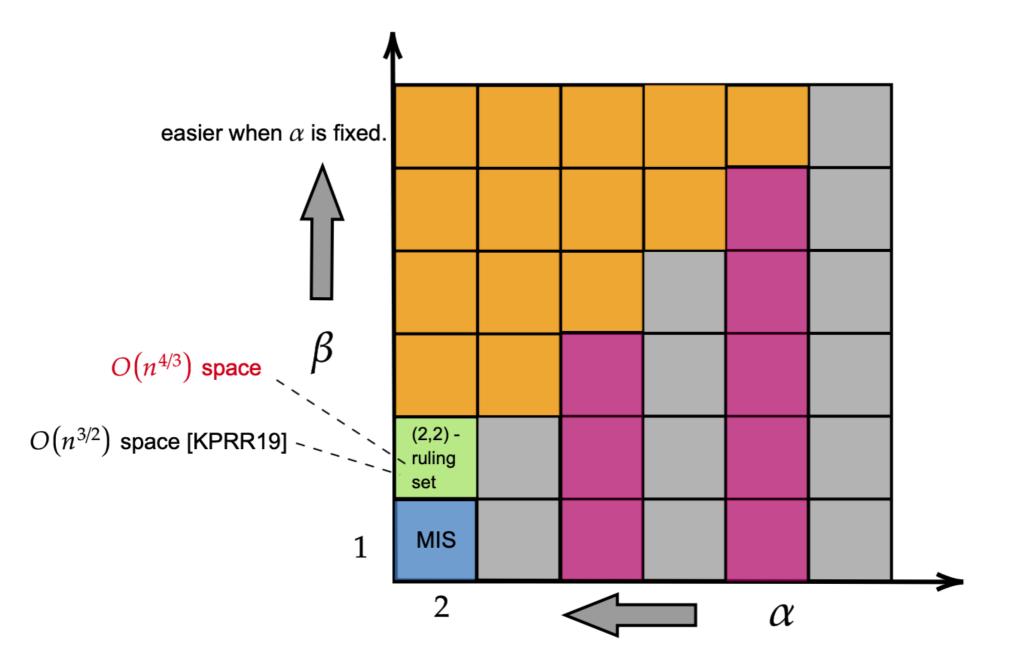


easier when β is fixed.



easier when β is fixed.

Results





Starting Point: Decomposition due to [KP12], [BKP14].

Let
$$r = \log n - \log \log n$$
, $d_o = n$, $d_i = \frac{n}{2^i}$ for $i \in [r]$
 $V_0 = V, E_0 = E$, and $G_0 = G$.
For $i \ge 1, V_i = \{v \in V_{i-1} \mid \deg_{G_{i-1}}(v) \le d_i\}$
 $G_i = G[V_i], E_i = E(G_i)$

1. For each $i \in [r-1]$, sample S_i of size $\frac{10 | V_i| \log n}{d_{i+1}}$ from V_i .

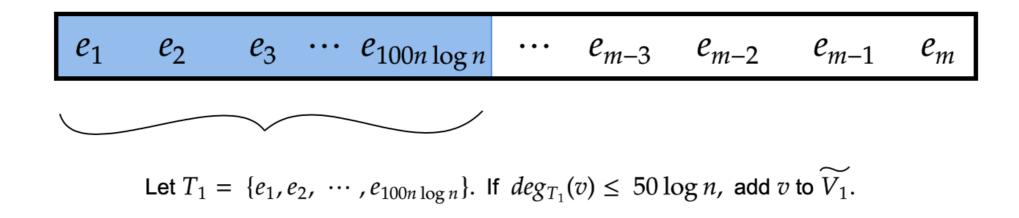
2. Let $H = G[\bigcup_{i=1}^{r-1} S_i \cup V_r]$. Output MIS of H.

 Claim: H is a (2,2)-ruling set of G with high probability.

Proof: Each $v \in V_i \setminus V_{i+1}$ has a neighbor in S_i .

- Sets V_i for $i \in \{1, 2, \dots, r\}$ are unknown and are (possibly) hard to determine in adversarial streams.
- But easier in random order streams!

 Since edges arrive in a random order, we can estimate degrees by looking at a small part of the stream.



• Claim: For $v \in \tilde{V}_1$, $\deg(v) \le \frac{n}{2}$.

Keep repeating:

$$e_{1} e_{2} e_{3} \cdots e_{100m \log n/d_{i+1}} \cdots e_{m-3} e_{m-2} e_{m-1} e_{m}$$
Let $T_{i+1} = \{e_{1}, e_{2}, \cdots, e_{100n \log n/d_{i+1}}\}$. If $deg_{T_{i+1} \cap G}[\widetilde{V_{i}}](v) \leq 50 \log n$, add v to $\widetilde{V_{i+1}}$.

• Claim: For $v \in \widetilde{V}_{i+1}$, $deg_{\widetilde{V_{i}}}(v) \leq \frac{d_{i}}{2}$. For $v \in \widetilde{V_{i}} \setminus \widetilde{V_{i+1}}$, $deg_{\widetilde{V_{i}}}(v) \geq d_{i}$.

Open Questions

- Complexity of MIS in random order streams?
- Is there a lower bound for (2,2)-ruling sets in adversarial streams? Can we get a better upper bound?