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Abstract

The matching problem in the online setting models the following situation: we are given

a set of servers in advance, the clients arrive one at a time, and each client has edges to some

of the servers. Each client must be matched to some incident server upon arrival (or left

unmatched) and the algorithm is not allowed to reverse its decisions. Due to this no-reversal

restriction, we are not able to guarantee an exact maximum matching in this model, only an

approximate one.

Therefore, it is natural to study a different setting, where the top priority is to match as

many clients as possible, and changes to the matching are possible but expensive. Formally,

the goal is to always maintain a maximum matching while minimizing the number of changes

made to the matching (denoted the recourse). This model is called the online model with

recourse, and has been studied extensively over the past few years. For the specific problem

of matching, the focus has been on vertex-arrival model, where clients arrive one at a time

with all their edges. A recent result of Bernstein et al. [BHR19] gives an upper bound of

O
(
n log2 n

)
recourse for the case of general bipartite graphs. For trees the best known bound

is O(n log n) recourse, due to Bosek et al. [BLSZP18]. These are nearly tight, as a lower

bound of Ω(n log n) is known.

In this paper, we consider the more general model where all the vertices are known in

advance, but the edges of the graph are revealed one at a time. Even for the simple case

where the graph is a path, there is a lower bound of Ω(n2). Therefore, we instead consider

the natural relaxation where the graph is worst-case, but the edges are revealed in a random

order. This relaxation is motivated by the fact that in many related models, such as the

streaming setting or the standard online setting without recourse, the matching problem

becomes easier when the input comes in a random order. Our results are as follows:

- Our main result is that for the case of general (non-bipartite) graphs, the problem with

random edge arrivals is almost as hard as in the adversarial setting: we show a family

of graphs for which the expected recourse is Ω
(

n2

logn

)
.

- We show that for some special cases of graphs, random arrival is significantly easier.

For the case of trees, we get an upper bound of O
(
n log2 n

)
on the expected recourse.

For the case of paths, this upper bound is O (n log n). We also show that the latter

bound is tight, i.e. that the expected recourse is at least Ω (n log n).
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1 Introduction

The online matching problem models a scenario in which a set of servers is given in advance,

and a set of clients arrive one at a time, with each client incident to some of the servers. In the

standard version of this model, the arriving client must be immediately matched to a free server

or be left unmatched, and this decision is irrevocable. Due to this constraint, it is not possible to

guarantee an exact matching, so the goal is to guarantee the best possible approximation. (See

the work of Karp et al. [KVV90], which shows that we can’t get better than 1− 1
e approximation.)

But there are several applications where the top priority is to match all the clients (or at

least to have a maximum matching), and the irreversibility condition of the standard online

model is too restrictive; in applications such as streaming content delivery, web hosting, job

scheduling, or remote storage it is preferable to reallocate the clients provided the number of

reallocations is small (see [CDKL09] for more details). Therefore, over the past decade there

have been many papers on the so-called online model with recourse, where the goal is to maintain

an exact solution the problem, while making as few changes to this solution as possible.

In the case of matching in particular, existing results focus on the vertex-arrival model, which

is analogous to the similar model in online matching without recourse. In this model, clients

arrive one at a time and ask to be matched to a server. The algorithm is allowed to change

the matching over time and must always maintain a maximum matching: the goal is then to

minimize the total number of changes made to the matching, denoted the recourse. Note that the

trivial recourse bound is O(n2) (n changes per client), but one can do significantly better. This

model has been studied extensively (see for example, [GKKV95, CDKL09, BLSZ14, BLSZ15,

GKS14, BLSZP18, BHR19]), and the state of the art is an upper bound of O(n log2 n) on the

total recourse [BHR19]) in bipartite graphs. For the special case of trees, the best known upper

bound is O (n log n) due to [BLSZP18]. These upper bounds nearly match the lower bound of

Ω (n log n) for trees due to [GKKV95].

In this paper, we consider a more general model where the graph can be non-bipartite and,

more importantly, the edges in the graph are revealed one at a time; the algorithm must again

maintain a maximum matching at all times. Unfortunately, we have very strong lower bounds

when the order in which the edges arrive is adversarial; even for the simplest possible case

of a path, Ω(n2) recourse is necessary. To overcome this lower bound, we consider a natural

relaxation of this model where the adversary can still choose the graph, but edges arrive in a

random order. One of the motivations behind this relaxation is that in several related models,

such as the online model without recourse or the streaming model, the matching problem is

shown to be easier when the input arrives in a random order. (See [KMT11, MY11] for online

model without recourse, and [KMM12, KKS14, GKMS19, FHM+20] for the streaming model).

Our results show that for the case of trees and paths, we can do significantly better in the

random edge-arrival model: in particular, we show an upper bound of O (n log n) on the expected

recourse in the case of paths (which we show is tight), and a bound of O
(
n log2 n

)
in the case

of trees. But our main result is that in general graphs, the random arrival setting is provably

almost as hard as the adversarial setting. We state our main results formally:

Theorem 1. There is a family of (non-bipartite) graphs Gn with n vertices and Θ (n log n)

edges, such that if edges of the graph arrive in a random order, then the total expected recourse

taken by any algorithm that maintains a maximum matching in the graph is Ω
(

n2

logn

)
.

Theorem 2. Let T be a tree and let the edges of T arrive one at a time in a random order.

Then, the expected total recourse taken by any algorithm that maintains a maximum matching

in T is at most O(n log2 n).
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Theorem 3. Let P be a path on n vertices, and let the edges of P arrive in a random order.

The expected total recourse taken by any algorithm that maintains a maximum matching in P

is O(n log n). Moreover, this bound is tight: the expected recourse taken by any algorithm is

Ω (n log n).

Remark 4. For the lower bounds of Theorems 1 and 3, when we say that any algorithm has

expected recourse Ω(T ), this holds even if the algorithm knows the random permutation in

advance. That is, the lower bound holds even if the algorithm is optimal for every possible

ordering of the edges.

Remark 5. For the upper bounds in Theorems 2 and 3, the algorithm we use simply changes

the matching along an augmenting path whenever such a path becomes available due to the

insertion of some edge. If there are multiple augmenting paths the algorithm can take, it chooses

between them arbitrarily; the upper bound holds regardless of the choice of path.

We leave as an intriguing open problem whether our lower bound in Theorem 1 also holds

for bipartite graphs, or whether these graphs allow for expected o(n2−ε) recourse when edges

arrive in a random order. See Section 5 for more details.

2 Preliminaries

Let G be an unweighted graph. A matching in G is a set of vertex-disjoint edges. Given any

matching M of G, we say that a vertex v is matched if it incident to an edge in M , and free

otherwise. Given any two matchings M and M ′, we use M ⊕M ′ to denote the symmetric

difference. We study the model of online matching with recourse under random edge arrivals.

In this model, the adversary fixes any graph G = (V,E) with m edges and n vertices. The

vertex set is given in advance, but the edges arrive one at a time; the arrival order e1, . . . , em is

a random permutation of E. The goal of the algorithm is to maintain a sequence of matchings

M1, . . .Mm, such that Mi is a maximum matching in the graph (V, {e1, . . . , ei}). The total

recourse of the algorithm is
∑m−1

i=1 |Mi ⊕Mi+1|, which is the total number of changes made to

the matching throughout the entire sequence of insertions.

Intuitively, an algorithm that minimizes recourse should only change the matching when the

maximum matching in the graph increases in size. We formalize this notion below.

Definition 6. We say that an algorithm is only-augmenting if for every 1 ≤ i ≤ m− 1, either

Mi = Mi+1, or Mi ⊕Mi+1 consists of a single augmenting path; that is, Mi ⊕Mi+1 consists of

an odd-length path P in {e1, . . . , ei+1} such that every second edge of P is in Mi, but the first

and last edges of P are not in Mi.

Simplifying Assumption: Throughout the paper, we only consider algorithms that are

only-augmenting.

The above assumption is clearly justified for upper bounds, since we just need to present

some algorithm with bounded recourse. For lower bounds, we justify the assumption with the

following lemma, which is proved in Section B of the appendix.

Lemma 7. (Justification of Simplifying Assumption) Let G be some graph whose edges arrive

in a random order. Say that we can prove that any only-augmenting algorithm that maintains

a maximum matching in G has expected recourse Ω(T ). Then any algorithm (possibly not

only-augmenting) that maintains a maximum matching in G has expected recourse Ω(T ).
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3 Lower Bound on Expected Recourse in General Graphs

This section will be devoted to proving Theorem 1, the main result of our paper. Our proof will

proceed as follows. In Section 3.1 we define our candidate graph Gn (we will refer to it as G from

now). The main step will be to show that between the times when half the edges of the graph

have arrived and a three-quarters of the edges have arrived, the graph induced by non-isolated

vertices contains a perfect matching or a near perfect matching throughout (see Definition 10

for a definition of near perfect matching). We will then use this fact to prove Theorem 1.

3.1 The Graph

We use n to denote the number of vertices in our graph. In this write-up, s = 400 log n and

t = n
500 logn . Let Ks denote the complete graph on s vertices. Our graph is called G (see Figure

1) and it consists of t copies of Ks that we index as K
(i)
s for 1 ≤ i ≤ t. The remaining n

5 vertices

are partitioned into t sets
{
D(i)

}
1≤i≤t of size 100 log n each. The graph G contains the following

edges.

(a) For 1 ≤ i ≤ t − 1, we introduce edges between every vertex of K
(i)
s and every vertex of

K
(i+1)
s . Additionally, edges are also introduced between every vertex of K

(1)
s and every

vertex of K
(t)
s .

(b) For 1 ≤ i ≤ t, we fix an arbitrary set U (i) ⊂ K(i)
s of size 100 log n. Introduce an arbitrary

matching between U (i) and D(i). Call this matching M (i). Let M = ∪ti=1M
(i); we add the

edges of M to G. For any u ∈ D ∪ U , we define M(u) to be the vertex that u is matched

to. We also let U = ∪ti=1U
(i) and D = ∪ti=1D

(i).

We denote the number of edges in G by m. Note that m = Θ (n log n).

3.2 Relating Gp and Gp·m

Definition 8. Let p ∈ [0, 1]. We define Ep ⊂ E(G) to be the set of edges obtained by sampling

each e ∈ E(G) with probability p. Let Vp = V (G) \ {v ∈ D such that (v,M(v)) /∈ Ep}; note

that Vp excludes isolated vertices in D. Let Gp be the induced subgraph G [Vp].

Definition 9. Let Ep·m ⊂ E(G) be the set of edges obtained by sampling p ·m random edges of

E(G). Let V p·m = V (G)\{v ∈ D such that (v,M(v)) /∈ Ep·m}; note that V p·m excludes isolated

vertices in D. Let Gp·m be the induced subgraph on G [V p·m].

Definition 10. Let H be a graph with an odd number of vertices. Let M be any matching of

H that leaves exactly one vertex unmatched. Then, M is called a near perfect matching of H.

We state the main theorem that we want to prove in this section:

Theorem 11. Let p ∈ [0.5, 0.75], then, the graph Gp·m contains a perfect matching or a near

perfect matching with probability at least 1−O
(

1
n3

)
.

To prove this theorem, we claim that it is sufficient to prove the following theorem:

Theorem 12. Let p ∈ [0.5, 0.75], then, graph Gp contains a matching or a near perfect matching

with probability at least 1−O
(

1
n4

)
.

To show that Theorem 12 implies Theorem 11, we prove the following lemma:

Lemma 13. Let p ∈ [0.5, 0.75], and let Gp·m and Gp be as described above, and let G be the

set of graphs that contain a perfect matching or a near perfect matching, then,

Pr (Gp·m /∈ G) ≤ 10
√
m · Pr (Gp /∈ G) .
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Figure 1: Graph G

We refer the reader to Section A of the appendix for a proof of Lemma 13. For now, we

prove Theorem 11 assuming Theorem 12 and Lemma 13:

Proof (Theorem 11). It follows from Lemma 13 that:

Pr (Gp·m does not contain a matching) ≤ 10
√
m · Pr (Gp does not contains a perfect matching)

= 10
√
m ·O

(
1

n4

)
(Due to Theorem 12)

= O

(
1

n3

)
. (Since m = Θ (n log n))

The following corollary follows from Theorem 11, via a union bound:

Corollary 14. Consider the graphs G = {Gp·m}p∈[0.5,0.75]. The probability that every G ∈ G
contains a perfect matching or a near perfect matching is at least 1−O

(
1
n

)
.

The bulk of our paper is proving Theorem 12. But first, we provide some intuition for our

choice of G by sketching how Corollary 14 implies our main result (Theorem 1).

Proof sketch of Theorem 1. Recall the edges M ⊂ E(G) that connect the vertices in D, where

|M | = Θ(n) (see 3.1). Consider how the graph Gp·m evolves from for p = 1
2 to p = 3

4 . Let us

assume without loss of generality that G
1
2
·m contains an even number of vertices. Whenever

an edge (d, x) from M is inserted into the graph, d ∈ D is added to V (Gp·m) (See Definition

8). Since we know from Corollary 14 that Gp·m contains a perfect matching whenever V (Gp·m)
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is even, we know that after every two edges (d, x) and (d′, x′) added to M , there is a perfect

matching in the resulting graph; thus, the algorithm must take some augmenting path from d to

d′. Because G consists of Ω
(

n
log(n)

)
consecutive layers, it is easy to see that with probability 1

2 ,

the shortest path from d to d′ has length Ω
(

n
log(n)

)
. We expect to add |M |4 = Ω (n) edges to

M between G
1
2
·m and G

3
4
·m, so we have Ω (n) augmenting paths of expected length Ω

(
n

log(n)

)
,

which implies total augmenting path length Ω
(

n2

log(n)

)
. See Section 3.5 for full proof.

3.3 Proving Gp has a Near-Perfect Matching

We now turn to proving Theorem 12. To this end, we introduce some notation:

Definition 15. Given Gp, we define the active subgraph A of Gp as follows: let V (A) = V (Gp)\
{u ∈ D ∪ U : (u,M(u)) ∈ Gp}. The active subgraph A is the induced subgraph G [V (A)].

Definition 16. We define A(i) to be the induced subgraph on V (A) ∩ V
(
K

(i)
s

)
for 1 ≤ i ≤ t.

For 1 ≤ i ≤ t, let |V
(
A(i)

)
| = ai. Then,

(a) If ai is even, then let P (i) ∪Q(i) be an arbitrary ai
2 by ai

2 bipartition of V (A(i)).

(b) If ai is odd, then let v(i) be an arbitrary vertex in V (A(i)) and let P (i)∪Q(i) be an arbitrary

bai2 c by bai2 c bipartition of V (A(i)) \ v(i).

We denote G(P (i), Q(i)) to be the bipartite graph between P (i) and Q(i)

Claim 17. We observe that V (A) ∩D = ∅. This follows from the following two facts:

(a) Consider any u ∈ D such that (u,M(u)) /∈ Gp. Then, u /∈ V (Gp). This follows immediately

from Definition 8.

(b) By Definition 15, we know that any u such that (u,M(u)) ∈ Gp is not included in V (A).

Claim 18. From Definition 15, we know that ai ≥ 400 log n − |U (i)|. Since |U (i)| = 100 log n

(see Section 3.1 (b)), it follows that ai ≥ 300 log n.

In order to prove Theorem 12, it is sufficient to prove the following theorem:

Theorem 19. The active subgraph, A contains a perfect matching or a near perfect matching

with probability at least 1−O
(

1
n4

)
.

Proof (Theorem 12). Given a perfect (resp. near-perfect) matchingM (A) of A, we will construct

a perfect (resp. near perfect) matching M (Gp) of Gp. Consider any u ∈ V (Gp) \ V (A). Note

that M(u) ∈ V (Gp) \ V (A) and (u,M(u)) ∈ Gp. So we may match u to M(u) in Gp. In

particular,M (Gp) =M (A)∪{(u,M(u)) where u ∈ V (Gp) \ V (A)}. Thus,M (Gp) is a perfect

(or a near perfect matching) of Gp if M (A) is a perfect (or a near perfect matching) of A.

3.4 Near Perfect Matching in Active Subgraph

To prove Theorem 19, we need Chernoff bound, and some existing results on matchings in

random bipartite graphs.

Theorem 20. [JLR00] Define B(n, n, p) to be the bipartite graph obtained by deleting edges

from Kn,n independently with probability 1− p. Then,

Pr (B(n, n, p) does not contain a perfect matching ) = O
(
ne−np

)
.
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Theorem 21 (Chernoff Bounds). Let X0, · · · , Xk be 0−1 random variables that are independent.

Let µ = E
[∑k

i=1Xi

]
. Then,

Pr

(
k∑
i=1

Xi ≤ (1− δ)µ

)
≤ e−

δ2µ
2 and, (1)

Pr

(
k∑
i=1

Xi ≥ (1 + δ)µ

)
≤ e−

δ2µ
3 . (2)

Consider the A(i)’s in Definition 16. We mentioned that for some of these A(i)’s the

corresponding ai’s might be odd. Let
{
A(i1), · · · , A(ik)

}
be this set, with i1 < · · · < ik. Let v(ij)

be the vertex left out of the bipartition P (ij) ∪Q(ij) of A(ij) for 1 ≤ j ≤ k (see Definition 16(b)).

We define the following events:

Definition 22. For 1 ≤ i ≤ t, let Ai be the event that G(P (i), Q(i)) contains a perfect matching

(or a near perfect matching). Let A = ∩ti=1Ai.

Definition 23. Let M′i be the maximum matching of G
(
P (i), Q(i)

)
for 1 ≤ i ≤ t. Let

M′ = ∪ti=1M′i.

Definition 24. For 1 ≤ m ≤
⌊
k
2

⌋
, let Bm be the event that there is an augmenting path between

v(i2m−1) and v(i2m) with respect to M′. Let B =
⋂b k2c
i=1 Bm.

In order to prove Theorem 19, we follow these steps:

(a) We will prove that each Ai happens with high probability, and therefore by union bound,

A happens with high probability also.

(b) We prove that each Bm, conditioned on A happens with high probability, and by union

bound, B conditioned on A also happens with high probability.

This will imply that the active graph, A contains a perfect matching or a near perfect matching

with high probability.

Before we move on to proving (a) and (b), we note that G(P (i), Q(i)) and V (A(i)) are both

random variables. In particular, V (A(i)) =
(
V (K

(i)
s ) \ U (i)

)
∪S, where S is a uniformly random

subset of U (i). However, if we fix the vertex set V
(
A(i)

)
, then the edges of G(P (i), Q(i)) are

precisely equivalent to those of a random bipartite graph; we remind the reader that P (i) ∪Q(i)

is an arbitrary bipartition of A(i) (see Definition 16). Formally:

Observation 25. For 1 ≤ i ≤ t, G
(
P (i), Q(i)

)
conditioned on V

(
A(i)

)
= S, where |S| = ai,

has the same distribution as B
(⌊

ai
2

⌋
,
⌊
ai
2

⌋
, p
)
.

Now we prove the following lemma:

Lemma 26. For 1 ≤ i ≤ t, Pr (¬Ai) = O
(

1
n5

)
. Moreover, Pr (¬A) = O

(
1
n4

)
.

Proof. We know that:

Pr (¬Ai) =
∑
T

Pr
(
¬Ai

∣∣∣ V (A(i)
)

= T
)
· Pr

(
V
(
A(i)

)
= T

)
=
∑
T

O
(
|T | · e−|T |

)
· Pr

(
V
(
A(i)

)
= T

)
(Follows from Observation 25 and Lemma 20)

=
∑
T

O

(
1

n5

)
· Pr

(
V
(
A(i)

)
= T

)
6



(Follows from Claim 18 that ai ≥ 300 log n)

= O

(
1

n5

)
.

(Since we are summing over disjoint events)

By union bound it follows that, Pr (¬A) = O
(

1
n4

)
.

Theorem 27. For 1 ≤ m ≤ bk2c, Pr (¬Bm | A) = O
(

1
n8

)
. Therefore, by union bound it follows

that Pr (¬B | A) = O
(

1
n7

)
.

Proof. To bound Pr (¬Bm | A), we consider two cases:

(a) Case 1: vi2m−1 and vi2m are in consecutive layers. That is, i2m = i2m−1 + 1. We

will give an overview of what we are about to do. We will use v to denote vi2m−1 , v′ to

denote vi2m , P and P ′ to denote P (i2m−1) and P (i2m), Q and Q′ to denote Q(i2m−1) and

Q(i2m) respectively.

Let NP (v) (resp. NP ′(v
′)) denote the set of vertices in P (resp. P ′) adjacent to v (resp.

v′). Let degP (v) (resp. degP ′(v
′)) denote |NP (v)| (resp. |NP ′(v

′)|).

Figure 2: Case (a): When unmatched vertices are in consecutive layers

For a set of vertices S, let M′(S) denote the set of vertices matched to S in M′ (refer

to Definition 23 for the definition of M′). We will prove that with high probability

|M′ (NP (v)) | and |M′ (NP ′(v
′)) | are large. Conditioned on these sizes being large, we

will prove that there is an edge (x, x′) in A where x ∈M′ (NP (v)) and x′ ∈M′ (NP ′(v
′)).

It follows there is an augmenting path P = (v,M′(x), x, x′,M′(x′), v′) in A (note that

M′ (x) ∈ NP (v) and M′ (x′) ∈ NP ′ (v
′)). (See Figure 2)
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To show this, we first show that |NP (v)| and |NP ′(v
′)| are large with high probability. We

will condition on A, so |M′ (NP (v)) | and |M′ (NP ′(v
′)) | will consequently be large with

high probability. It then follows that one of the edges between these two sets is in A with

high probability.

We now turn to the formal proof of case (a). Let Xv and Xv′ be the random variables

denoting degP (v) and degP ′(v
′) respectively. Each edge incident on v and v′ in A is

sampled independently with probability p ∈ [0.5, 0.75]. This is true even if we condition on

the event A. Consequently, E [Xv | A] = E [Xv] ≥ 75 log n. Since Xv is the sum of 0− 1

independent random variables, we may apply Chernoff bound (see Theorem 21). It follows

that:

Pr (Xv ≤ 25 log n | A) = O

(
1

n8

)
.

Similarly, we have:

Pr (Xv′ ≤ 25 log n | A) = O

(
1

n8

)
.

Define Y to be the event that |M′ (NP (v)) | ≥ 25 log n and |M′ (NP ′ (v
′)) | ≥ 25 log n.

Observe that,

Pr (¬Y | A) ≤ Pr (Xv ≤ 25 log n | A) + Pr (Xv′ ≤ 25 log n | A)

= O

(
1

n8

)
.

Define Z to be the event that there is an edge between M′ (NP (v)) and M′ (NP ′ (v
′)).

Observe that,

Pr (¬Z | A) ≤ Pr (¬Y | A) + Pr (¬Z | Y,A)

= O

(
1

n8

)
+

1

nO(logn)
.

The second term follows from the fact that each edge appears independently with probability

p ∈ [0.5, 0.75], and there are Ω(log2 n) edges between M′ (NP (v)) and M′ (NP ′ (v
′))

conditioned on Y. It follows that Pr (¬Bm | A) ≤ Pr (¬Z | A) = O
(

1
n8

)
. This proves our

claim for this case.

(b) Case 2: i2m > i2m−1 + 1. We denote vi2m−1 by v, P (i2m−1) by P and v(i2m) by v′. Let

f = i2m − i2m−1. For 1 ≤ j ≤ f , let P (i2m−1+j) be denoted by P + j. We similarly define

Q and Q+ j. We also define the following sets:

S0 = NP (v)

Sj = NP+j(M′(Sj−1)) for 1 ≤ j ≤ f.

For 0 ≤ j ≤ f , let Xj be the event that |M′(Sj)| ≥ 25 log n. Let E be the event that there

is an edge between v′ andM′(Sf ). It is easy to check that the occurrence of X0,X1 · · · ,Xf
implies that there is an alternating path from v to a large set of vertices (at least Ω (log n))

in Q + j for all j ∈ [f ]. Note that E implies that there is an edge from Q + f to v′.

Combined, X1 · · · ,Xf , E imply an augmenting path from v to v′. We thus have:

Observation 28. Let Bm and X1, · · · ,Xf , E be as defined above (refer to Definition 24

for a definition of Bm), then:

Pr (Bm | A) ≥ Pr
(
∩fk=0Xk ∩ E

∣∣∣ A) .
8



From the above observation, we deduce that in order to upper bound Pr (¬Bm | A), it is

sufficient to upper bound Pr
(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A). We know that:

Pr
(
∪fk=0¬Xk ∪ ¬E

∣∣∣ A) ≤ f∑
k=0

Pr
(
¬Xk

∣∣ ∩i−1k=0Xk ∩ A
)

+ Pr
(
¬E
∣∣∣ ∩fk=0Xk ∩ A

)
.

(Follows from the definition of conditional probability)

We computed Pr (¬X0 | A) in case (a). We remind the reader this is just the probability

that |M′ (S0) | ≤ 25 log n. We now show how to compute Pr (¬Xj | A,X0, · · · ,Xj−1).
Consider any w ∈ P + j. We want to compute the probability that w is in the set

NP+j(M′ (Sj−1)) = Sj conditioned on the event Xj−1 and A i.e. |M′(Sj−1)| ≥ 25 log n.

Since every edge on w is present in the active graph A independently with probability p:

Pr (v /∈ Sj | A,X0, · · · ,Xj−1) ≤ (1− p)25 logn

≤
(

1

2

)25 logn

(3)

(Follows from the fact that p ≥ 0.5)

This implies that:

E [|Sj | | A,X0, · · · ,Xj−1] ≥ 100 log n

Since |Sj | is a sum of 0− 1 random variables (it is the sum of 1{v∈Sj}, that take value 0

with probability O
(

1
n25

)
(due to eq. (3)) and 1 otherwise), we can apply Chernoff bounds

(Theorem 21):

Pr (|Sj | ≤ 25 log n | A,X0, · · · ,Xj−1) = O

(
1

n9

)
Since we condition on A (that is a perfect or, a near perfect matching being present), we

know that:

|M′ (Sj) | = |Sj |

Consequently, we have:

Pr
(
|M′ (Sj) | ≤ 25 log n

∣∣ A,X0, · · · ,Xj−1
)

= Pr (|Sj | ≤ 25 log n | A,X0, · · · ,Xj−1)

= O

(
1

n9

)
Finally, we want to bound Pr (¬E | A,X0, · · · ,Xf ). This can be upper bounded:

Pr (¬E | A,X0, · · · ,Xf ) ≤
(

1

2

)25 logn

(Edges on v′ appear independently with probability p ≥ 0.5)

= O

(
1

n25

)
It is immediate from Observation 28 that:

Pr (¬Bm | A) = O

(
1

n8

)

9



Figure 3: Case (b): When v and v′ are not in consecutive layers

.

From case (a) and case (b), we know that by union bound, Pr (¬B | A) = O
(

1
n7

)
Proof (Theorem 19). From Lemma 26 and Theorem 27 we have that:

Pr (A does not contain a perfect matching ) ≤ Pr (¬A) + Pr (¬B | A)

= O

(
1

n4

)
.

3.5 Lower Bound On Lengths of Augmenting Paths

We start with some definitions:

Definition 29. For i ∈ {1, · · · ,m}, we denote by ei, the edges arriving at time i. Let S =

{e0.5m, · · · , e0.75m}.

This section will be devoted to proving that among the edges in S, Ω (n) edges will be forced

to augment along paths of expected length Ω
(

n
logn

)
. Formally,

10



Theorem 30. With high probability, there exists S′ ⊂ S, |S′| ≥ n
100 such that each e ∈ S′ is

forced to augment along a path of expected length at least Ω
(

n
logn

)
, irrespective of the algorithm

used to find the maximum matching in the graph.

We first give a proof of Theorem 1 using Theorem 30:

Proof (Theorem 1). For i ∈ [m], let Zi be the random variable denoting the length of the

augmenting path that we augment along when the edge ei joins. Let Z =
∑m

i=1Zi, which is the

random variable denoting the total length of the augmenting paths taken during the course of

the algorithm. We want to compute the quantity E [Z]. We note that:

E [Z] =
m∑
i=1

E [Zi]

≥
∑
j∈S′

E [Zj ]

= |S′| · Ω
(

n

log n

)
= Ω

(
n2

log n

)
(Due to Theorem 30).

Before we prove Theorem 30, we need certain observations, and the following version of

Chernoff for negatively associated random variables:

Theorem 31. [DP09] Let X0, · · · , Xk be 0− 1 random variables that are negatively associated.

Let µ = E
[∑k

i=1Xi

]
. Then,

Pr

(
k∑
i=1

Xi ≤ (1− δ)µ

)
≤ e−

δ2µ
2 and, (4)

Pr

(
k∑
i=1

Xi ≥ (1 + δ)µ

)
≤ e−

δ2µ
3 . (5)

We remind the reader of the edges M in graph G between D and U (refer to Section 3.1(b)).

Note that |M | ≥ n
5 . Further, M = ∪ti=1M

(i), and |M (i)| ≥ 100 log n for all i ∈ [t].

We now prove the following claim about S:

Claim 32. LetR be the event that for all i ∈ [t], |M (i)∩S| ≥ 10 log n. Then, Pr (R) ≥ 1−O
(

1
n3

)
.

Proof. Consider any M (i), and let e ∈M (i). Let Ze be a 0− 1 random variable that takes value

1 if e ∈ S, and 0 otherwise. Let Z =
∑

e∈M(i) Ze. This is the random variable that denotes

|M (i) ∩ S|. Further, Z is a sum of negatively associated random variables, and therefore obeys

the condition of Theorem 31. We note the following:

Pr (Ze = 1) =
1

4

E [Z] = 25 log n

11



It follows that:

Pr (Z ≤ 10 log n) ≤ exp
(
− (0.6)2 (0.5) 25 log n

)
≤ exp (−4.5 log n)

= O

(
1

n4

)
.

Due to union bound, we know that Pr (R) ≥ 1−O
(

1
n3

)
.

We also have the following corollary due to Claim 32:

Corollary 33. With probability at least 1−O
(

1
n3

)
, |M ∩ S| ≥ n

50 .

We are ready to define the candidate set S′ in Theorem 30. Let M ∩ S =
{
ei1 , · · · , eiq

}
. Let

us assume without loss of generality that before the arrival of ei1 , the set V (Gi1−1) is even, so by

Theorem 11 the graph Gi1−1 has a perfect matching. We define S′ to contain every second edge

of M ∩S: that is, S′ =
{
ei2 , ei4 , · · · , ei2b q2 c

}
. For the rest of the proof we proceed as follows: we

will show that with high probability, when ei2s arrives, it will join an augmenting path ending

at ei2s−1 where s ∈
{

1, · · · ,
⌊ q
2

⌋}
. Let ei2s ∈ M (j) and ei2s+1 ∈ M (j′). Then, the length of the

augmenting path that ei2s−1 joins is at least d(ei2s−1 , ei2s) = min {t− |j′ − j|, |j′ − j|}. We prove

that the expected value of this quantity is at least Ω
(

n
logn

)
.

We prove the following observation:

Lemma 34. For all s ∈
{

1, · · · ,
⌊ q
2

⌋}
, E
[
d
(
ei2s−1 , ei2s

)]
≥ n

2000 logn .

Proof. Consider ei2s−1 then the number of edges in M at a distance k from ei2s−1 is 200 log n.

This implies that:

Pr
(
d
(
ei2s−1 , ei2s

)
= k

)
=

1000 log n

n

E
[
d
(
ei2s−1 , ei2s

)]
=

t
2∑

k=0

k · Pr
(
d
(
ei2s−1 , ei2s

)
= k

)
≥ t

4

=
n

2000 log n
.

Lemma 35. If Gp·m contains a perfect matching or a near perfect matching for all p ∈ [0.5, 0.75],

then for all s ∈
{

1, · · · ,
⌊ q
2

⌋}
, ei2s is forced to augment along a path that ends in ei2s−1 .

Proof. We remind the reader that |V (Gp·m) | is a random variable (check Definition 9) and it’s

value increases if and only if the edges in M arrive. Recall the assumption that |V (Gi1−1) | is

even. Upon the arrival of ei1 , we have a near perfect matching in the graph, and this remains

the case until ei2 arrives. At this point under our assumption, there must be a perfect matching

in the graph, and the only unmatched vertices are the end points of ei1 and ei2 in D. (Here we

use the simplifying assumption from the preliminaries that the algorithm is only-augmenting,

so since the arrival of ei1 does not increase the size of the maximum matching, and since the

algorithm only changes the matching via augmenting paths, the endpoint of ei1 in D remains

free until the arrival of ei2 .) It follows that these endpoints are joined together by an augmenting

path. Continuing this way, we can prove the theorem for any s ∈
{

1, · · · ,
⌊ q
2

⌋}
.
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Proof (Theorem 30). Let F be the event that there is an S′ ⊂ S, |S′| ≥ n
100 such that each

e ∈ S′ augments along a path of expected length at least Ω
(

n
logn

)
. Note that the event F fails

to happen if one of these go wrong:

(a) |S′| ≤ n
100 . We call this event ¬U . We know from Corollary 33 that Pr (¬U) = O

(
1
n3

)
.

This is because S′ just takes alternate elements from S.

(b) Let V be the event that for all p ∈ [0.5, 0.75], Gp·m contain a perfect matching or a

near perfect matching. Then, from Lemma 35 we know that V implies that for all

s ∈
{

1, · · · ,
⌊ q
2

⌋}
, ei2s−1 is forced to join an augmenting path ending in ei2s . From Lemma

34, we know all these paths have expected length at least n
2000 logn . We know from Corollary

14, that Pr (¬V) = O
(
1
n

)
.

It follows that the occurrence of A and B implies the occurrence of F . Consequently, Pr (F) ≥
1− Pr (¬U)− Pr (¬V) ≥ 1−O

(
1
n

)
.

4 Upper And Lower Bounds On Trees

4.1 Upper Bound on Trees

This section will be devoted to proving results on trees. Let T be a tree on n vertices, for

i ∈ [n− 1], we denote by ei the edge arriving at time n− 1− i.
We recall Theorem 2:

Theorem 2. Let T be a tree and let the edges of T arrive one at a time in a random order.

Then, the expected total recourse taken by any algorithm that maintains a maximum matching

in T is at most O(n log2 n).

Definition 36. Consider an edge e. Let Zke be the event that e on arrival joins an augmenting

path of length k; that is, when e joins, there is an augmenting path of length k that contains e.

Let Wk
e be the event that when e joins, there is some path of length k that contains e. Similarly,

we will use Z≥ke to denote the event that e on arrival joins an augmenting path of length at least

k and W≥ke to denote the event that e on arrival joins a path of length at least k.

Definition 37. Let e be any edge. Let APe be a random variable denoting the length of the

augmenting path that e joins, and let Pe be a random variable denoting the length of the path

that e joins.

The following observation follows from the fact that if ei on arrival joins an augmenting path

of length k, then it joins a path of length k:

Observation 38. Consider edge ei, that is, the edge that arrives at time n− 1− i, then:

Pr
(
Zkei
)
≤ Pr

(
Wk
ei

)
and,

E [APei ] ≤ E [Pei ] .

In order to prove Theorem 2, it is sufficient to prove the following lemma:

Lemma 39. Let Pei be as defined above, then, E
[∑N

i=1 Pei

]
= O

(
n log2 n

)
.

We state the proof of Theorem 2 using Lemma 39:

Proof (Theorem 2). Let AP be the random variable denoting the expected total length of the

augmenting paths taken by the algorithm. Then, AP =
∑n

i=1APei . This implies that:

E [AP ] =

n−1∑
i=1

E [APei ]

13



≤
n−1∑
i=1

E [Pei ]

= O
(
n log2 n

)
.

(Follows from Lemma 39).

We now prove Lemma 39 to complete the proof of Theorem 2:

Proof Lemma 39. Let ei = e, and consider a fixed path L of length k such that L ⊆ T and

e ∈ L; note that T refers to all the edges in the tree, not just those that have arrived so far. In

order for e to join L when e arrives, each edge on L must have appeared before e. That is, the

edges of this k-length path must all be among ei+1, · · · , en−1. Now, fixing k = 4·n·logn
i we have:

Pr (All edges of L appear before e | ei = e) ≤
∏
e′∈L

Pr
(
e′ appears before e

∣∣ ei = e
)

≤
(
n− i− 1

n− 1

)k
≤ e−( i·k

n−1)

= O

(
1

n4

)
.

Using the fact there are at most n2 paths at any point in the tree:

Pr
(
W≥kei

)
≤
∑
e∈T

Pr
(
W≥kei

∣∣∣ ei = e
)

= n2 ·O
(

1

n4

)
= O

(
1

n2

)
.

Recalling that k = 4·n·logn
i , we have:

E [Pei ] ≤ n · Pr
(
W≥kei

)
+

4 · n · log n

i

≤ 1

n
+

4 · n · log n

i

E

[
n−1∑
i=1

Pei

]
= O

(
n log2 n

)
.

This finishes the proof of our Lemma.

4.2 Upper Bound on Paths

We next prove our theorem for paths, recalling Theorem 3:

Theorem 3. Let P be a path on n vertices, and let the edges of P arrive in a random order.

The expected total recourse taken by any algorithm that maintains a maximum matching in P

is O(n log n). Moreover, this bound is tight: the expected recourse taken by any algorithm is

Ω (n log n).
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Let {e′1, · · · , e′n−1} be the edges of the path P . We remind the reader of the definition of the

event Wk
e′i

(see Definition 36). We have the following simple observation:

Observation 40. For any i ∈ [n− 1], Pr
(
Wk
e′i

)
≤ 2

k2
. Therefore, E

[
Pe′i

]
= O (log n).

Proof. Consider any path L =
{
e′j1 , · · · , e

′
jk

}
of length k that e′i can join. Let e′i = e′jl for some

l ∈ [k]. Then,

Pr
(
e′i on arrival joins L

)
=

2 · (k − 1)!

(k + 2)!
≤ 2

k3
.

The denominator corresponds to all possible orderings of e′i1−1, · · · , e
′
ik+1. On the other hand, if

we want e′il to join L, then e′i1 , · · · , e
′
il−1, e

′
il+1, · · · , e′ik must appear before e′il and e′i1−1 and e′ik+1

must appear after e′il . The numerator refers to the number of such orderings. Since the number

of choices for L are k, we get Pr
(
Wk
e′i

)
≤ k · 2

k3
≤ 2

k2
, and E

[
Pe′i

]
≤
∑n

k=1 k ·
1
k2

= O (log n), as

desired.

With this, we have the proof of the upper bound in Theorem 3:

Proof (Theorem 3). Let AP =
∑n−1

i=1 APe′i . Due to observation 38, we know that:

E

[
n−1∑
i=1

APe′i

]
≤ E

[
n−1∑
i=1

Pe′i

]
= O (n log n) .

4.3 Lower Bound on Paths

This subsection will be devoted to proving the lower bound in Theorem 3. We note that each

edge on arrival joins two paths, so we have the following definition:

Definition 41. We use Ri and Qi to denote the two paths joined by e′i when it arrives. (Ri

and/or Qi could be empty if e′i is incident to a previously isolated vertex.) We also use Q
+ 1

2
i

(respectively, Q
− 1

2
i ) to denote the half of Qi that is away (respectively, near) e′i (see Figure 4).

Definition 42. We say that two subpaths Q,R of P are connected by edge e = (vi, vi+1) if Q,R

are disjoint, one of the paths has vi as an endpoint, and the other has vi+1 as an endpoint. Now,

fix any subpaths Q,R that are connected by the edge e′i. We define DiQ,R to be the event that

Qi = Q and Ri = R.

Definition 43. For a path L, we use |L| to denote the number of edges on L. For any two

edges e and f , we define δ (e, f) to be the number of edges on the path P between e and f . For

example, δ
(
e′1, e

′
n−1
)

= n− 1.

Next, we state the following simple observation:

Observation 44. If |Ri| and |Qi| are even, then e′i on arrival joins creates an augmenting path

between two unmatched vertices u and v, where u ∈ Ri and v ∈ Qi.

Definition 45. Suppose we condition on the event DiQ,R where Q and R are fixed paths that

are connected by the edge e′i. We let tQ and tR denote the times when the last edge on Q

and the last edge on R arrived. Let etQ and etR denote the last edges to arrive on Q and R

respectively (see Figure 4).
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Figure 4: Conditions for a long augmenting path to be created

Our intuition for proving the lower bound is the following. Suppose etQ ends up being in

Q+ 1
2 . Before the arrival of etQ , Q+ 1

2 was broken into two segments. Suppose the segment further

from e′i is of even length, then this segment contains an unmatched vertex. Further, the arrival

of etQ doesn’t alter the matched/unmatched status of this vertex. This is because the overall

length of Q is even, so one vertex will be unmatched. The same argument holds for etR also if

it ends up being in R+ 1
2 . This will imply that when e′i arrives, it creates an augmenting path

between some vertex in Q+ 1
2 and some vertex in R+ 1

2 , so the length of this augmenting path is

about half the length of the path Q ◦ e′i ◦R that e′i joins. We state this intuition formally as a

lemma:

Lemma 46. Consider the edge e′i, and let Q and R be the even-length paths connected by

e′i. Let fQ and fR be the edges of Q and R respectively, that are the furthest from e′i. Let

E iQ,R ⊂ DiQ,R be the event that etQ ∈ Q+ 1
2 , etR ∈ R+ 1

2 , and δ
(
fQ, eiQ

)
, δ (fR, eiR) are odd.

Then, the occurrence of E iQ,R implies that e′i on arrival joins two unmatched vertices v ∈ Q+ 1
2

and v′ ∈ R+ 1
2 , and the length of the augmenting path between v and v′ is at least k−1

2 .

Proof. Note that since δ
(
fQ, etQ

)
is odd, the segment of Q+ 1

2 that fQ is contained in before the

arrival of etQ , has even length. This implies that it contains an unmatched vertex, v. The same

argument holds for v′ as well. Since v ∈ Q+ 1
2 and v′ ∈ R+ 1

2 , we know that the augmenting path

between v and v′ has at least k−1
2 edges.

We are now ready to prove the lower bound in Theorem 3.

Proof (Theorem 3). We remind the reader of the definition of APe′i (see Definition 37). We

let i ∈
[
n
3 + 1, 2n3

]
and k ≤ n

3 . Using Observation 44 and Lemma 46, we arrive at following

inequality:

E
[
APe′i

]
≥
∑
k≤n

3

(
k − 1

2

)
· Pr

 ⋃
|Q|+|R|=k−1
|Q|,|R| even

E iQ,R
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=
∑
k≤n

3

∑
|R|+|Q|=k−1
|Q|,|R| even

(
k − 1

2

)
· Pr

(
E iQ,R

)

To see why the above equation is true, note that Observation 44 tells us that if the paths being

joined are even length paths, then they each contain an unmatched vertex. Lemma 46 states that

the occurrence of the event E iP,Q ensures that these unmatched vertices are far apart. Here are

we using the simplifying assumption from the preliminaries: since the algorithm only changes the

matching via augmenting paths, those unmatched vertices remained the same until the arrival

of e′i. Therefore, the probability of occurrence of an augmenting path of length k−1
2 involving

e′i is lower bounded by Pr

(⋃
|Q|+|R|=k−1
|Q|,|R| even

E iQ,R

)
. The equality in the next line follows from the

fact that the events
{
E iQ,R

}
are disjoint. Now, let v and v′ be the unmatched vertices in Q and

R, where |Q|+ |R| = k − 1, and |Q|, |R| are even. Then,

Pr
(
E iQ,R

)
≥ 2

k · (k + 1) · (k + 2)
·
(

1

8

)
·
(

1

8

)
The first term in the expression is due to Pr

(
DiQ,R

)
(we refer the reader to Observation 40 for a

formal proof). The second term is due to the fact that conditioned on DiQ,R, there are
⌊
|Q|
4

⌋
choices for eiQ that satisfy the condition of E iQ,R (that is, only e ∈ P+ 1

2 with δ (e, fQ) odd, satisfy

the condition of E iQ,R). The same argument holds for choices for eiR as well. It follows from the

two equations above that:

E
[
APe′i

]
≥
∑
k≤n

3

(
k + 1

2

)
·
(
k − 1

2

)
·
(

1

8

)
·
(

1

8

)
· 2

k · (k + 1) · (k + 2)

= Ω (log n) .

Note that in the first inequality, we multiply by k+1
2 because for every choice of odd k, there are

k+1
2 ways of removing an edge so that it gets split into two paths of even length.

The proof of the theorem then follows from the fact that E
[∑ 2n

3

i=n
3
+1APe′i

]
= Ω(n log n).

5 Conclusion and Open Problems

We consider the problem of maximum matching with recourse in the random edge-arrival setting.

The goal is to compute the expected recourse. As mentioned in the introduction, there are

strong lower bounds of Ω
(
n2
)

in the adversarial edge-arrival model, even for the case of simple

paths. For random edge-arrivals, we can do significantly better for special classes of graphs:

we prove an upper bound of O (n log n) for the case of paths and O
(
n log2 n

)
for the case of

trees. This bound is tight up to log n factors, since we prove that for the case of paths, any

algorithm must take expected total recourse of Ω (n log n). But for general graphs, we show that

random arrival is basically as hard as adversarial arrival: we give a family of graphs for which

the expected recourse is at least Ω
(

n2

logn

)
.

An interesting open question is the case of bipartite graphs: if edge-arrivals are random,

can we prove a similar lower bound of Ω
(

n2

polylog(n)

)
on the expected recourse? Our current

lower-bound construction seems hard to extend to the bipartite case, as our proof crucially relies
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on the fact that after a constant fraction of the edges have arrived, if we focus only on the

non-isolated vertices in the lower-bound graph G, then G contains a perfect matching with high

probability. This allowed us to force the adversary to take an augmenting path between every new

pair of non-isolated vertices. But in the case of bipartite graphs, it seems difficult to guarantee a

perfect matching between the non-isolated vertices because the number of non-isolated vertices

on the left might not be equal to the number on the right; in fact, they are likely to differ by a

Θ (
√
n) factor.

A Omitted Proofs

In this section, we give a proof of Lemma 13. In order to do so, we state the following simple

observation that relates the distribution of Gp with Gp·m:

Claim 47. The distribution of Gp conditioned on |E(Gp)| = p ·m is the same as the distribution

of Gp·m.

Proof. Let G0 be any subgraph of G containing p ·m edges. Then, we know that:

Pr (Gp = G0 | |E(Gp)| = p ·m) =
Pr (Gp = G0)

Pr (|E(Gp)| = p ·m)

=
(p)p·m (1− p)(1−p)·m(
m
p·m
)

(p)p·m (1− p)(1−p)·m

=

(
m

p ·m

)−1
= Pr (Gp·m = G0) .

Now, we prove Lemma 13:

Proof (Lemma 13). We know that:

Pr (Gp /∈ G) =

m∑
k=0

Pr (Gp /∈ G | |E(Gp)| = k) · Pr (|E(Gp)| = k)

≥ Pr (Gp /∈ G | |E(Gp)| = p ·m) · Pr (|E(Gp)| = p ·m)

≥ Pr (Gp·m /∈ G) ·
(

m

p ·m

)
· (p)p·m · (1− p)(1−p)·m .

(Follows from Claim 47)

Using Stirling Approximation:

k! ≈
√

2πk

(
k

e

)k
We have:

Pr (Gp /∈ G) ≥ Pr (Gp·m /∈ G) · 1

10
√
m
.
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B Justifying the Assumption from Preliminaries

In this section, we justify the simplifying assumption from Section 2. For convenience, we restate

the corresponding Lemma below.

Lemma 48. (Justification of Simplifying Assumption) Let G be some graph whose edges

arrive in a random order. Say that we can prove that any only-augmenting algorithm that

maintains a maximum matching in G has expected recourse Ω(T ). Then any algorithm (possibly

not only-augmenting) that maintains a maximum matching in G has expected recourse Ω(T ).

Proof. Recall that the edges of G arrive in the order e1, . . . , em. Define Ei = {e1, . . . , ei}, E0 = ∅,
and Gi = (V,Ei). Define µ(Gi) be the maximum matching size in graph Gi, and let η = µ(Gm)

be the maximum matching size in the whole graph G.

Now, we define the following set of crucial indices C = {j | µ (Gj) = µ (Gj−1) + 1}. Let

M1, · · · ,Mm be the matchings maintained by the algorithm at every turn. Note that since the

algorithm always maintains a maximum matching, we have |Mj | = |Mj−1|+ 1 for all j ∈ C and

|Mj | = |Mj−1| otherwise. We denote the indices inside C as C = {i1, . . . , iη}, and define i0 = 0.

Now, let ALG be the (possibly not only-augmenting) algorithm whose expected recourse

we are trying to bound. Let M1, . . . ,Mm be the sequence of matchings maintained by ALG.

Note that the total recourse of ALG is at least
∑η−1

j=0 |Mij ⊕Mij+1 |. Our proof hinges on the

following definition and claim.

Definition 49. Define a sequence M∗i0 ,M
∗
i1
, · · · ,M∗iη to be only-augmenting if M∗i0 = ∅, each

M∗ij is a maximum matching in Gij , and each symmetric difference M∗ij ⊕M
∗
ij+1

consists of a

single augmenting path.

Claim 50. Consider any sequence of matchings Mi0 ,Mi1 , · · · ,Miη , where Mi0 = ∅ and Mij is a

maximum matching in Gij . Then, there exists an only-augmenting sequence M∗i0 , · · · ,M
∗
iη

such

that
η−1∑
j=0

|Mij ⊕Mij+1 | ≥
η−1∑
j=0

|M∗ij ⊕M
∗
ij+1
|

.

Before proving the claim, let us quickly observe that it completes the proof of the lemma.

Let σ be some permutation of the edge set, and define r(σ) to be the best possible recourse

achievable on this permutation. Let r∗(σ) be the best possible recourse of an only-augmenting

algorithm. The assumption of the lemma states that Eσ[r∗(σ)] = Ω(T ). The claim above clearly

implies that r(σ) ≥ r∗(σ), which implies that Eσ[r(σ)] = Ω(T ), thus completing the lemma.

Proof of Claim 50. We use a proof by induction. To make the induction step work, we actually

prove a slightly stronger claim. Namely, that

η−1∑
j=0

|Mij ⊕Mij+1 | ≥
η−1∑
j=0

|M∗ij ⊕M
∗
ij+1
|+ |Miη ⊕M∗iη |

To prove the claim for η = 1, we set M∗i1 = Mi1 . Now, say that the claim is true for some η,

and consider η + 1. Let M∗i0 , . . . ,M
∗
iη

be the sequence guaranteed by the induction hypothesis.

We now need to find a suitable M∗iη+1
. Consider the symmetric different M∗iη ⊕Miη+1 . Because

Miη+1 is a maximum matching and |M∗iη | = η = |Miη+1 | − 1, it is clear that M∗iη ⊕Miη+1 consists

of a single augmenting path, plus some disjoint alternating paths and cycles. Let a be the

augmenting path and let ρ be the total length of all the other paths plus cycles. We set M∗iη+1

19



to be M∗iη ⊕ a. Note that |M∗iη+1
⊕Miη+1 | = ρ and that any sequence of changes from M∗iη to

Miη+1 has size at least |a|+ ρ. We thus have:

η∑
j=0

|Mij ⊕Mij+1 | ≥ |Miη ⊕Miη+1 |+ |M∗iη ⊕Miη |+
η−1∑
j=0

|M∗ij ⊕M
∗
ij+1
|

(follows due to the induction hypothesis)

≥ ρ+ |a|+
η−1∑
j=0

|M∗ij ⊕M
∗
ij+1
|

(follows from the sequence of changes from M∗iη to Miη+1)

≥ |M∗iη+1
⊕Miη+1 |+

η∑
j=0

|M∗ij ⊕M
∗
ij+1
|

We have thus completed the proof of the lemma.
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