
A Simple Semi-Streaming Algorithm for Global Minimum Cuts

Sepehr Assadi∗ Aditi Dudeja†

Abstract

Recently, Rubinstein, Schramm, and Weinberg [ITCS’18] gave an algorithm for finding an
exact global minimum cut of undirected graphs in the cut-query model in which the access to
the graph is via querying the number of edges crossing a given cut. It was subsequently observed
in the literature that this algorithm also implies that the minimum cut problem in the streaming
model admits an Õ(n)-space algorithm in only two passes over the input.

In this paper, we present a simpler and self-contained proof of this result in the streaming
model with an improved space complexity that we show is within a sub-logarithmic factor of
being optimal.

1 Introduction

Given an undirected graph G = (V,E), the minimum cut problem asks for finding a set S ⊂ V
of vertices, namely, a cut, with a minimum number of crossing edges between S and V \ S. The
minimum cut problem is a classical graph optimization problems with a wide range of applications;
see, e.g., [15, 16, 19, 23–27] and references therein. We study this problem in the semi-streaming
model [13]. A semi-streaming algorithm is given the input edges in an arbitrarily ordered stream
and is allowed to make one or a few passes over this stream, while using a limited memory of
Õ(n) := O(n · polylog(n)) bits; here, and throughout the paper, n denotes the number of vertices.
Semi-streaming algorithms with a small number of passes are particularly successful in maintaining
I/O-efficiency for processing massive graphs and as such have been studied extensively (see [30]).

It has been known for over a decade how to find a (1 + ε)-approximate minimum cut via semi-
streaming algorithms in one pass [2]. This is done by maintaining a cut sparsifier of the graph—a
subgraph with Õ(n/ε2) edges that preserves values of all cuts within a (1±ε)-approximation [24]—
and then returning a minimum cut of this sparsifier. It was also known that any single-pass
algorithm for finding an exact minimum cut requires Ω(n2) space [35]. Recently, [32] developed an
algorithm in the cut-query model that finds a minimum cut by making Õ(n) queries that return
a value of a given cut. While this was not originally a semi-streaming algorithm, it was observed
in [7] that using streaming cut sparsifiers such as [2, 22], this approach leads to a surprising result
in the streaming model: A semi-streaming algorithm for exact minimum cuts in only two passes!
(This result was subsequently extended to weighted graphs with O(log n) passes [31]).

Our Results. The goal of this paper is to present a simpler and self-contained proof of this
fundamental result for minimum cut directly in the semi-streaming model.

Theorem 1. There is a semi-streaming algorithm that with high constant probability outputs an
exact minimum cut of a given n-vertex graph in two passes and space of O(n log n) bits.
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Our proof of Theorem 1 is different from [32] and instead follows the recent edge-out contraction
framework of [15] for the minimum cut problem. To obtain the precise bounds in Theorem 1 on
the space and (more importantly) pass-complexity, several modifications to [15] are needed. As the
goal of this paper is to present a complete and self-contained proof of a semi-streaming algorithm
for minimum cut, we present a complete proof of Theorem 1 without relying on results of [15] but
will point out how some of our intermediate lemmas relate to [15].

Theorem 1, besides simplifying and streamlining the result of [32] for semi-streaming algorithms,
also improves the space complexity from O(n ·polylog(n)) for some unspecified polylog(n)-factor to
only O(n log n) bits. This is already within a logarithmic factor of being optimal as Ω(n) bits are
clearly necessary just to specify the output cut. We prove a new lower bound that implies that the
space complexity of this algorithm is in fact even within a sub-logarithmic factor of optimal—the
pass-complexity is also optimal in light of the Ω(n2) lower bound of [35] for single-pass algorithms.

Theorem 2. Any streaming algorithm that outputs the exact minimum cut value of given n-vertex
graphs with probability more than half in constant p > 1 passes requires Ω(n · (log (n))1/2p−1) space.

We conclude this section with the following remark which was an important motivation behind
this paper in providing a self-contained and “streaming-friendly” proof of the result of [32].

Perspective: Beyond Iterative Multi-Pass Algorithms. Most of the multi-pass graph
streaming algorithms in the literature for optimization problems are iterative algorithms. They
maintain a partial solution and iteratively refine it during each pass, while making a “steady
progress” toward the final answer. This is typically obtained by simulating a greedy algorithm in a
pass-efficient manner via a Luby-style argument (see, e.g. [1,5,14,28,29]) or by running an iterative
optimization method such as multiplicative weight update or gradient descent (see, e.g. [3,4,9,20]).

The algorithm in Theorem 1 is however based on a different principle: use the first pass to
sparsify the graph while keeping one optimal solution intact, and then recover this sparsifier in the
second pass and solve the problem offline. This approach seems to exploit the power of streaming
algorithms in processing sparse graphs better than the iterative methods and lead to streaming al-
gorithms with surprisingly smaller number of passes. We believe that this viewpoint is an important
(non-technical) contribution of our work as it may pave the way for obtaining more pass-efficient
streaming algorithms for other graph problems as well.

2 A Semi-Streaming Algorithm for Minimum Cut

We prove Theorem 1 in this section. The algorithm uses two passes and in each pass it performs
a different task as follows: (i) The goal of the first pass is to contract some edges of the graph,
without “destroying” at least one minimum cut, to reduce the number of vertices to O(n/dmin)
where dmin is the minimum degree of the graph (thus an upper bound on the minimum cut value);
(ii) the goal of the second pass is to find a subgraph of this new graph with O(n) edges which has
the same minimum cut as in the original graph—at this point, the problem can be solved easily
by storing all these O(n) edges and finding a minimum cut of this final subgraph using any offline
algorithm. We note that this high level approach is the same as the edge-out contraction framework
of [15] and the key differences are in the way how each step is implemented.

We now formalize this. The main algorithm is simply as follows (to obtain the final algorithm,
we simply repeat this algorithm O(1) time in parallel to boost its success probability):
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Algorithm 1. A two-pass streaming algorithm for the minimum cut problem.

• First pass: For every vertex v ∈ V , sample 2 edges incident on v independently and
uniformly at random with repetition and store them during the stream. Let G(2) be the
resulting graph and V1, . . . , Vt be its connected components.

In parallel, compute the minimum degree dmin of G and if t > 100 · n/dmin, terminate the
algorithm and output FAIL.

• Second pass: Consider the multi-graph H obtained from G by contracting vertices in each
set Vi into a single vertex and removing the self-loops.

Let F1, . . . , Fdmin
be initially empty. For each arriving edge e of H in the stream, include e

in Fi where i is the smallest index such that {e} ∪ Fi contains no cycle as a subgraph of H;
ignore e if no such i exists.

At the end of the second pass, compute a minimum cut of the graph F := F1 ∪ . . . ∪ Fdmin
;

if it contains less that dmin edges return this cut (after expanding the contracted vertices) as
the minimum cut of G; otherwise, return any singleton cut v with deg (v) = dmin.

The space complexity of Algorithm 1 can be bounded as follows.

Claim 2.1. Algorithm 1 always uses space of O(n log n) bits.

Proof. The first pass of the algorithm requires storing two edges per vertex—each edge can be
sampled using reservoir sampling using O(log n) bits. We also need to maintain a counter per
vertex to compute dmin which again can be done in O(log n) bits per vertex.

The second pass involves computing each Fi as a spanning forest of H \ F1 ∪ · · · ∪ Fi−1 for all
i ∈ [dmin]. Since H always has t = O(n/dmin) vertices (otherwise the algorithm aborts), each Fi is
going to have O(n/dmin) edges and thus we also need to store O(n) edges in total in the second
pass which requires O(n log n) bits. This implies that the overall space needed by the algorithm is
O(n log n) bits.

We now analyze the correctness of the algorithm. Each of the two subsequent lemmas identify
the main property of each pass of the algorithm. In what follows, let C := {e1, . . . , eλ} denote any
arbitrary minimum non-singleton cut of G (we thus slightly abuse the notation and use λ to denote
the value of minimum non-singleton cuts and not necessarily the minimum cut of G).

Lemma 2.2. With probability Ω(1), in the graph G(2) at the end of the first pass: (i) number of
connected components is at most 100 ·n/dmin; and (ii) if λ < dmin, then no edge e1, . . . , eλ in C has
both endpoints in the same connected component.

Lemma 2.2 already follows from the results of [15] (see Theorem 2.4 in the arXiv version). To
keep this note self-contained, we give a complete and different proof of this lemma.

Lemma 2.3. Conditioned on the event in Lemma 2.2, the cut output by the algorithm in the second
pass is a minimum cut of G.

We prove these lemmas in the next two subsections and for now show how they imply Theorem 1.
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Proof of Theorem 1. By Lemmas 2.2 and 2.3, Algorithm 1 already outputs a minimum cut with
probability Ω(1) in two passes and O(n log n) space. The remaining observation is that this algo-
rithm also returns the value of whatever cut it finds correctly as the cuts in H correspond to cuts
in G. As such, we can run Algorithm 1 in parallel O(1) times and return the cut with the smallest
number of edges as the final answer, to boost the success probability to any desired constant.

First Pass: Proof of Lemma 2.2

Part (i): Bound on the number of connected components.

Proof Strategy: We first give a high-level overview of the proof strategy. The goal will be to
upper bound the probability that G(2) has more than 100 · n/dmin connected components. For this
event to happen, G(2) necessarily needs to have at least k := 50 · n/dmin connected components,
each of size at most dmin/50; otherwise the remaining components will have more than n vertices
together, a contradiction. So the goal now becomes bounding the probability that G(2) has at
least k connected components of size at most dmin/50. The proof is now by a careful union bound
argument, over all possible “counter examples”, namely, all ways of creating k such connected
components for G(2). To do this, we first observe that each such component can be associated with
a BFS tree of size at most the size of the component. Next, we observe that if a fixed tree of size s
is indeed the associated BFS tree, then at least s+ 1 edges of the component are between vertices
of the BFS tree. However, this event is unlikely since the sizes of the components are small (at
most dmin/50), and each vertex samples edges uniformly from all its neighbors (that are at least
dmin in number.) Finally, we give a crude upper bound on the number of BFS trees of size s, which,
together with a union bound, tells us that for a fixed s the probability of getting a BFS tree of size
s is small. From the discussion above, this is also an upper bound on the probability that we get
a component of size at most s, which will allow us to finalize the proof.

Details of the proof. As mentioned in the proof sketch, we want to upper bound the probability
that G(2) has at least k := 50 · n/dmin connected components of size at most dmin/50. Consider
the directed graph D obtained by directing each edge of G(2) from the vertex that sampled it to
the other endpoint. The above bound implies that there are at least k vertices in D such that if
we perform a BFS from them, we can only reach dmin/50 vertices and these BFS trees are disjoint
across the k vertices (this is true for undirected edges and thus certainly true after we direct the
edges). We now bound the probability that this event happens.

Let v1, . . . , vk be any arbitrary set of k vertices from D. Let s be any integer between k and n
and consider any choice of s1 + . . .+ sk = s where 1 ≤ si ≤ dmin/50. Define the following event:

• E(v1, . . . , vk, s1, . . . , sk): The BFS tree starting from each vi in the graph D has si vertices
and is disjoint from the BFS trees of all vj for j ̸= i.

By the above discussion and a union bound,

Pr
(
G(2) has > 100 · n/dmin components

)
≤

∑
all valid choices of

v1, . . . , vk and s1, . . . , sk

Pr (E(v1, . . . , vk, s1, . . . , sk)) . (1)

We bound this probability in the following, starting with the following key claim.

Claim 2.4. For any valid choices of v1, . . . , vk and s1, . . . , sk with s1 + · · ·+ sk = s,

Pr (E(v1, . . . , vk, s1, . . . , sk)) ≤
(

3

50

)s

·
(

50

dmin

)k

.
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Proof. Let us fix some vi and si for i ∈ [k] and bound the probability that the BFS tree of vi has size
si. We first pick a “skeleton” of the BFS tree: consider any sequence (x1, . . . , xsi) of integers where
0 ≤ xj ≤ 2 and x1 + . . .+ xsi = si − 1. We interpret this sequence as the number of child-nodes of
vertices in the actual BFS tree starting from vi where the nodes are written in the order that they
are dequeued in the BFS traversal (see Figure 1 for an illustration). Note that this skeleton does
not fix which vertices of D belong to the tree (beside vi) but only the number of outgoing edges
each of them may have in the tree.

Let us also fix a skeleton (x1, . . . , xsi). In this tree, having a node with in-degree < 2 necessarily
means that the corresponding sampled edge of this node ends in an already visited node of the tree
(and hence the new edge is not part of the BFS tree). Considering there are si − 1 edges in this
tree but each of the si nodes sampled 2 edges in the algorithm, we have that si + 1 sampled edges
ends up in an already visited node. Regardless of the choice of which actual vertices in D belong
to the tree, the probability that this event happens for an edge is at most (si/dmin) (note that the
actual probability depends on the vertices included in the skeleton but it is always ≤ si/dmin). As
such,

Pr (BFS tree starting at vi in D has the skeleton (x1, . . . , xsi)) ≤
(

si
dmin

)si+1

.

As the total number of possible skeletons with si vertices is at most 3si , we have,

Pr (BFS tree starting at vi has si vertices ) ≤ 3si ·
(

si
dmin

)si+1

≤
(
3 · si
dmin

)si

,

as 0 < si < dmin. As the choice of vertices across BFS trees for v1, . . . , vk are disjoint, the events
above independently happen for each one and thus,

Pr (E(v1, . . . , vk, s1, . . . , sk)) ≤
k∏

i=1

(
3 · si
dmin

)si

=

(
3

dmin

)s

·
k∏

i=1

ssii

≤
(

3

dmin

)s

·
(
dmin

50

)s−k

≤
(

3

50

)s

·
(

50

dmin

)k

,

(as 1 ≤ si ≤ dmin/50 and so at most s− k indices can have value other than 1)

concluding the proof.

We can now conclude the proof by simply counting all possible choices of v1, . . . , vk and s1, . . . , sk
in Eq (1) and apply Claim 2.4 to each choice, as follows:

Pr
(
G(2) has > 100 · n/dmin components

)
≤

(
n

k

)
·

n∑
s=k

(
s+ k

k

)
·
(

3

50

)s

·
(

50

dmin

)k

(since there are at most
(
s+k
k

)
choices for s1 + . . .+ sk = s)

≤
(
n

k

)
·
(
k

n

)k

·
n∑

s=k

(
12

50

)s

(as 50/dmin = k/n and
(
s+k
k

)
≤ 2s+k ≤ 22s = 4s)

≤
n∑

s=k

(
36

50

)s

(as
(
n
k

)
≤ ek · (n/k)k and ek ≤ 3s)

< 10−5,

as k ≥ 50. As such, with probability at least 1−10−5, number of components is at most 100·n/dmin.

5



(a) The original graph G. (b) Skeletons of sequences S1, S2, and S3.

(c) Choosing vertices that belong in the BFS
trees of v1, v2 and v3. The dotted edges denote
other edges sampled by these vertices.

(d) One way of sampling edges so that G(2) has
components of size 4, 5 and 3.

Figure 1: An illustration of the proof of Claim 2.4. In this example, we consider the case when k = 3, s1 = 4, s2 =
5, s3 = 3, and v1 = a, v2 = l, v3 = e. In (a), we have the original graph G, from which G(2) is being sampled. In (b),
we choose one choice of sequences Si that are of length si for i ∈ [3], and the sum of the numbers in Si is si − 1; the
figure now show examples of “skeletons” consistent with sequences Si. In (c) we choose one assignment of nodes to
the skeletons in G(2), and we get BFS trees consistent with the sequence. Observe that the same skeleton could give
rise to a different BFS tree depending on the assignment of the nodes. The dotted lines show one choice of remaining
edges that have been sampled. These edges necessarily point to a vertex already in the tree. Finally, in (d), we show
the connected components of G(2) that are consistent with these choices.
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Part (ii): Preserving the cut C = {e1, . . . , eλ} when λ < dmin. Let N(C) denote the vertices
incident on e1, . . . , eλ and for each v ∈ N(C), c(v) denote the number of edges incident on v that
belong to the cut C. An important observation is that for every vertex v ∈ N(C), c(v) ≤ deg(v)/2;
otherwise, by moving v to the other side of the cut (which is a valid move as this is a non-singleton
cut), we obtain a cut with strictly smaller number of edges, a contradiction.

The probability that no edge e1, . . . , eλ has both its endpoints in the same component of G(2)

is equal to the probability that none of these edges are sampled in G(2) which is equal to:

∏
v∈N(C)

(
1− c(v)

deg(v)

)2

≥ exp

−4
∑

v∈N(C)

c(v)

deg(v)


(as c(v)/ deg(v) ≤ 1/2 and 1− x ≥ e−2x for x ∈ [0, 1/2])

≥ exp

− 4

λ

∑
v∈N(C)

c(v)

 = exp

(
−8λ

λ

)
= e−8.

To conclude, the probability that both events in part (i) and part (ii) happen simultaneously
is at least e−8 − 10−5 > e−9, finalizing the proof of Lemma 2.2.

Second Pass: Proof of Lemma 2.3

Firstly, since H is obtained from G by contraction, any cut in H corresponds to some cut in G
and thus minimum cut of H is at least as large as that of G. Suppose H is k-edge-connected.
Then, any cut in H has at least k edges (by definition) and subsequently any cut in F has at least
min {dmin, k} edges by the choice of spanning forests F1, . . . , Fdmin

: consider any cut with less than
min {dmin, k} edges in F and let e be an edge of this cut in H but not in F ; the reason e is not
included in F by the algorithm can only be that e creates a cycle in every one of edge-disjoint
spanning forests F1, . . . , Fdmin

in F but this can only happens if F already contains at least dmin

edges of the cut (one per each spanning forest), a contradiction.

If λ < dmin and conditioned on the event of Lemma 2.2, H will be λ-connected and thus F is also
λ-connected. The minimum cut in F then corresponds to a minimum cut in H which subsequently
is a minimum cut in G, concluding the proof in this case.

If λ ≥ dmin, then H will be at least dmin-connected and thus F is also dmin-connected and we
simply return a singleton cut of size dmin in G which is again the correct answer.

This concludes the proof of the lemma and thus Theorem 1.

Remark 2.5. Our algorithm in Theorem 1 can also be implemented in two passes over a dynamic
stream (with edge insertions and deletions) using O(n · polylog(n)) space: In the first pass, we use
standard ℓ0-samplers [21] to sample the edges of each vertex, and in the second pass, we run the
algorithm of [6] for finding a k-edge connected subgraph of an n-vertex graph in Õ(nk) space (for
us, k = dmin and number of vertices is O(n/dmin) which translates to an Õ(n) space as desired).

3 A Lower Bound for Global Minimum Cut

In this section, we prove Theorem 2. That is, we prove that any streaming algorithm that computes
exactly, the minimum cut of an n-vertex graph must use space Ω(n log log n).

The general principle behind the lower bound is simply as follows: we create a bipartite graph
in which the minimum cut is a simpleton cut corresponding to the minimum degree vertex on one
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side of the bipartition—the goal of the streaming algorithm would then be to simply compute the
minimum degree vertex on one side of the bipartite graph. We show that this requires the algorithm
to maintain a non-trivial information for each vertex of the bipartition and use this to establish
the lower bound. The formal proof is by a reduction from the following communication problem.

Definition 3.1. In the M-Fold-GreaterThan problem for any integers M,N ≥ 1, Alice and
Bob are each given M separate N -bit numbers X = (x1, . . . , xM ) and Y = (y1, . . . , yM ) (each
xi, yi ∈ {0, 1}N ) and the goal is to determine the value of GTM

N (X,Y ) defined as follows:

GTM
N (X,Y ) =

{
1 if ∃ xi, yi such that xi > yi

0 otherwise
.

Proposition 3.2. For any integers M,N, r ≥ 1, any r-round communication protocol for the
M-Fold-GreaterThan problem, wherein Alice and Bob only send r messages to each other,
requires Ωr(M ·N 1/r) bits of communication to succeed with constant probability more than half.

We will first a reduction to the problem, and then prove Proposition 3.2. Essentially we show
that any streaming algorithm for the min-cut problem that takes space c gives us a communication
protocol for M-Fold-GreaterThan that has cost c. Thus, in order to show a space lower
bound for a streaming algorithm for the global minimum cut problem, it is sufficient to show a
communication lower bound for M-Fold-GreaterThan.

Lemma 3.3. Let M and N be positive integers such that M = 8 · 2N . Let A be a δ-error p-
pass streaming algorithm that determines if the global min-cut of a (2M)-vertex graph is ≥ 2N or
< 2N . Then, there is a δ-error (2p− 1)-round protocol π that solves GTM

N with communication
cost O(p · s), where s is the space needed by A.

Proof of Lemma 3.3. Given an instance (X,Y ) of GTM
N , Alice and Bob create a graph G with

vertices V = {u1, · · · , uM , v1, · · · , vM}, and edges EA, EB (as functions of X and Y , respectively,
and known only to the respective player), plus some extra input-independent edges (independent
of X,Y and known by both parties). These edges are as follows (see Figure 2 for an illustration):

(i) EA: for i ∈ [M ], Alice adds 2N−xi edges from ui to 2
N−xi arbitrary vertices in {v1, · · · , vM};

(ii) EB: for i ∈ [M ], Bob adds yi edges from ui to yi arbitrary vertices in {v1, · · · , vM};

(iii) Input-Independent edges: Alice and Bob create a clique on v1, v2, · · · , vM .

The following claim states the main property of this graph.

Claim 3.4. The minimum cut in the graph G has value equal to mini∈[M ]

{
yi + 2N − xi

}
.

Proof. To prove this claim, we analyze the values of different cuts in the graph:

1. Any cut S where {v1, · · · , vM} ⊆ S. In this case, the value of the cut is
∑

ui∈V \S(2
N−xi+yi),

which is minimized when V \ S = {ui∗} for i∗ = argmini∈[M ]

{
2N − xi + yi

}
.

2. Any cut S which partitions {v1, · · · , vM}. Without loss of generality, let us assume S contains
at least half (but not all) the vertices in {v1, · · · , vM} (otherwise, we can simply consider the
V \ S instead). Consider any vj ∈ V \ S. Then this vertex has degree at least M/2 in S.
Therefore, there are at least M/2 ≥ 4 · 2N edges going across such cuts.
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(a) Edges EA added by Alice. (b) Edges EB added by Bob. (c) A min-cut of G = (V,EA∪EB).

Figure 2: An illustration of the graphs created by Alice and Bob in Lemma 3.3. Alice and Bob add edges EA and
EB that depend on X = {x1, · · · , xM} and Y = {y1, · · · , yM}, respectively. The min-cut of G = (V,EA ∪ EB) is
({ui∗}, V \ {ui∗}), where i∗ = argmini∈[M ]

{
2N − xi + yi

}
. It has value less than 2N ⇔ GTM

N (X,Y ) = 1.

Note that for any i ∈ [M ], 2N − xi + yi ≤ 2N+1 − 1 considering 0 ≤ yi, xi ≤ 2N − 1. Consequently,
cuts of type ({ui∗} , V \ {ui∗}) in case 1 have a smaller value than those described in case 2. This
implies that the minimum cut in the graph indeed has value mini∈[M ]

{
2N − xi + yi

}
. Claim 3.4

By Claim 3.4, the value of the minimum cut in G determines GTM
N (X,Y ) as well:

(i) Suppose that the minimum cut ofG is at least 2N . Therefore, for all i ∈ [M ], yi+2N−xi ≥ 2N .
This implies that for all i ∈ [M ], xi ≤ yi, that is GTM

N (X,Y ) = 0.

(ii) On the other hand, suppose the minimum cut of G is less than 2N . By Claim 3.4, there is
some i∗ ∈ [M ] with 2N − xi

∗
+ yi

∗
< 2N , implying that xi

∗
> yi

∗
; thus, GTM

N (X,Y ) = 1.

The final step is a standard simulation of the streaming A on the graph G in a communication
and round efficient manner. Alice now runs A on her part of the graph and sends the contents of
the memory to Bob, and Bob continues running A on his part of the graph (either player can run A
on input-independent edges). This corresponds to the first pass of A on the stream EA ∪EB. Bob
then sends the contents of the memory to Alice, who continues the execution of A (second pass).
In the last pass, Bob outputs 0 if A returns that the minimum cut is at least 2N and 1 otherwise.

Since Alice and Bob simply simulate A and send the memory contents as messages to each
other, the protocol also errs with probability at most δ. Further, each pass of A is simulated by
first Alice sending a message to Bob, and Bob sending a message back to Alice. In the final pass,
Bob simply returns the answer. Therefore, there are at most 2p− 1 messages sent in the protocol,
and its communication cost if O(s ·p), where s is the space used by A, as in each round, the players
are only communicating contents of the memory of A which is of size s at most. This completes
the proof of Lemma 3.3.

We now move on to the proof of Proposition 3.2. Towards this, we introduce some notation.

Definition 3.5. For a communication problem P , we define Rδ(π) to be the minimum communi-
cation complexity of a δ-error randomized protocol π that solves P .

Definition 3.6. Let P be a communication problem. Let D be a distribution from which the
instances of problem P are drawn. Then, Dδ

D(π) is the minimum communication cost of a δ-error
protocol π over the distribution D.
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We denote the Shannon entropy of a random variable A by H(A). The mutual information of
two random variables A and B is denoted by I(A : B) = H(A)−H(A | B).

Definition 3.7. Consider a distribution D and a protocol π for some problem P . Let (A,B) ∼
D be the input. Let Π = Π(A,B) denote the transcript of the protocol concatenated with public
randomness used by π. Then, we define ICostD(π) of a protocol π with respect to D to be ID(Π :
A | B) + ID(Π : A | B).

Definition 3.8. We define ICδ
D(P ) of a problem P with respect to a distribution D is the minimum

ICostD(π) taken over all δ-error protocols π.

We use the following basic properties of entropy and mutual information. We refer the reader
to Chapter 2 of [12].

Fact 3.9. Let A,B and C be three random variables that may or may not be correlated:

1. 0 ≤ H(A) ≤ log |A|, where |A| be the size of support of A. The equality holds iff A is uniformly
distributed on its support.

2. I(A : B) ≥ 0. Equality holds iff A ⊥ B.

3. Conditioning on a random variable reduces entropy: H(A | B,C) ≤ H(A | B). Equality holds
iff A ⊥ C | B.

4. Chain rule for mutual information: I(A,B : C) = I(A : C) + I(B : C | A).

Fact 3.10. For any random variables A, B and C, I(A : B | C) ≤ I(A : B) +H(C).

Proof.

I(A : B | C) = I(A : B,C)− I(A : C)

(follows from Fact 3.9-(4))

= I(A : B) + I(A : C | B)− I(A : C)

(follows from Fact 3.9-(4))

≤ I(A : B) +H(C | B)
(follows from definition of mutual information and Fact 3.9-(2))

≤ I(A : B) +H(C)

(Conditioning only decreases entropy).

Fact 3.11. For random variables A,B,C and D if A ⊥ D | C, then I(A : B | C) ≤ I (A : B | C,D).

Proof. Since A and D are independent conditioned on C, by Fact 3.9-(2), H(A | C) = H(A | C,D)
and H(A | C,B) = H(A | C,B,D). Consequently,

I(A : B | C) = H(A | C)−H(A | C,B)
= H(A | C,D)−H(A | C,B)
≤ H(A | C,D)−H(A | C,B,D)
= I(A : B | C,D)

10



To prove this Proposition 3.2, we will give a hard distribution for GTM
N and use Yao’s lemma

to prove a lower bound on Rδ(GTM
N ).

We state a known hard distribution for GT1
N = GTN that we will be using :

Distribution DN : A hard distribution for GTN .

1. Sample an index k ∈ {1, 2, · · · , N} uniformly at random.

2. Sample z1, · · · , zk−1, w, xk+1, · · · , xN , yk+1, · · · , yN uniformly at random from {0, 1}.

3. Let x = z1, · · · , zk−1, w, xk+1 · · · , xN and let y = z1, · · · , zk−1, w̄, yk+1, · · · , yN .

We define D0
N = DN | w = 0 and D1

N = DN | w = 1.

We state a result due to [11] about distribution DN .

Lemma 3.12. Consider any deterministic ϵ-error protocol π for GTN , where ϵ < 1
2 , then, ICostDN

(π) =
Ω(logN).

Next we state a lemma due to [17] that allows us to give a bound on ICostD1
N
(π).

Lemma 3.13. Fix any communication problem P . Let ϵ1 and ϵ2 be constants such that 0 < ϵ1 <
ϵ2 < 1

2 . Let D be the input distribution. For every ϵ1 error protocol π for P on D, there is an
ϵ2-error protocol π′ for P on distribution D such that:

ICostD(π
′) = O(ICostD1(π) + log ∥π∥)

Consequently, we have the following corollary:

Corollary 3.14. For δ < 1
2 , any δ-error protocol π for DN with ∥π∥ = o(N) has ICostD1

N
(π) =

Ω(logN).

We now describe our hard distribution for GTM
N :

Distribution µN×M : A hard distribution for GTM
N :

1. Pick i∗ ∈ [M ] uniformly at random. Choose (x, y) ∼ DN .

2. Let (xi, yi) ∼ D1
N for all i ̸= i∗.

3. Let (xi∗ , yi∗) = (x, y).

We wish to prove the following theorem about µN×M :

Theorem 3. Consider any δ-error protocol π for GTM
N on the distribution µN×M . Then, there

exists a protocol π′ for GTN on distribution DN such that:

1. c
M · ICostµN×M (π) ≥ ICostD1

N
(π′), where c is a constant, and

2. ∥π∥ = ∥π′∥

We first show that it is sufficient to prove an intermediate lemma:

11



Lemma 3.15. Consider any δ-error protocol π for GTM
N on the distribution µN×M . Then, there

exists a protocol π′ for GTN on distribution DN such that:

1. 1
M · ICostµ1

N×M
(π) ≥ ICostD1

N
(π′), and

2. ∥π∥ = ∥π′∥

Proof of Theorem 3. Consider any δ-error protocol π. Assuming that 1
M ·ICostµ1

N×M
(π) ≥ ICostD1

N
(π′),

we prove that c
M · ICostµN×M (π) ≥ ICostD1

N
(π′), where c is a constant. We let (A,B) ∼ µN×M and

consider,

ICostµN×M (π) = IµN×M (Π : A | B) + IµN×M (Π : B | A)
≥ IµN×M (Π : A | B, w) + IµN×M (Π : B | A, w)− 2 ·H(w)

(Implied by Fact 3.10)

=
1

2
· IµN×M (Π : A | B,w = 1) +

1

2
· IµN×M (Π : B | A,w = 1)− 2 ·H(w)

(by definition of mutual information)

=
1

2
· Iµ1

N×M
(Π : A | B) +

1

2
· Iµ1

N×M
(Π : B | A)− 2

(since H(w) = 1)

=
1

2
· ICostµ1

N×M
(π)− 2.

So, we are left with the task of proving Lemma 3.15. To do this, we state the following
well-known claim that we will need to prove our claim:

Claim 3.16. For any distribution D and any protocol π, let R be the public randomness used in
π, then, ICostD(π) = ID(Π : A | B, R) + ID(Π : B | A, R)

Proof.

ICostD(π) = I(Π : A | B) + I(Π : B | A)
= I(Π, R : A | B) + I(Π, R : B | A)
(Π denotes the concatenation of the transcript and the public randomness)

= I(Π : A | B, R) + I(R : A | B) + I(Π : B | A, R) + I(R : B | A)
(By chain rule, that is, Fact 3.9-(4))

I(Π : A | B, R) + I(Π : B | A, R)

(Follows from the fact that R ⊥ A,B, and Fact 3.9-(3)).

This proves our claim.

Proof of Lemma 3.15. Given a δ-error protocol π for GTM
N on distribution µN×M , we give a pro-

tocol π′ for GTN :

12



Protocol π′. The protocol for solving GTN using protocol π for GTM
N .

Input: An instance (X,Y ) ∼ DN . Output: Yes if X ≥ Y and No otherwise.

1. Using public randomness, the players sample i∗ ∈ [M ] uniformly at random. Let Xi∗ = X
and Yi∗ = Y .

2. Using public randomness, sample X<i∗ and Y>i∗ from D1
N independently.

3. Using private randomness, Alice samples X>i∗ such that (Xj , Yj) ∼ D1
N for all j > i∗ and

Bob similarly samples Y<i∗ .

4. Let X ′ = (X1, · · · , XM ) and Y ′ = (Y1, · · · , YM ). The players then output the result of
protocol π on (X ′, Y ′).

We note that the distribution created by π′ is exactly the distribution µN×M , and GTN (X,Y ) =
1 iff GTM

N (X ′, Y ) = 1. It follows that π′ is a δ-error protocol.

In the equations that follow, let I be the random variable for i∗.

ICostD1
N
(π′) = ID1

N
(Π′ : X | Y,R) + ID1

N
(Π′ : Y | X,R)

(From Claim 3.16)

= ID1
N
(Π′ : X | Y,R, I) + ID1

N
(Π′ : Y | X,R, I)

(I is chosen using public randomness)

=

M∑
i=1

Pr (I = i) (ID1
N
(Π′ : X | Y,R, I = i) + ID1

N
(Π′ : Y | X,R, I = i))

(by definition of mutual information)

=
1

M

M∑
i=1

ID1
N
(Π′ : Xi | Yi, X<i, Y>i, I = i) + ID1

N
(Π′ : Yi | Xi, X<i, Y>i, I = i)

(R = (X<i, Y>i, I))

=
1

M

M∑
i=1

ID1
N
(Π′ : Xi | Yi, X<i, Y>i) + ID1

N
(Π′ : Yi | Xi, X<i, Y>i)

The last equality follows from the fact that since (X,Y ) ∼ D1
N , all sets (Xj , Yj) are chosen from

D1
N and are independent of the event I = i. We continue our argument:

ICostD1
N
(π′) ≤ 1

M

M∑
i=1

ID1
N
(Π′ : Xi | Y ′, X<i) + ID1

N
(Π′ : Yi | X ′, Y>i)

(Xi ⊥ Y <i | Y ′ and Yi ⊥ X>i | X ′, so we can apply Fact 3.11)

=
1

M
(ID1

N
(Π′ : X ′ | Y ′) + ID1

N
(Π′ : Y ′ | X ′))

(Chain rule of mutual information)

=
1

M
(Iµ1

N×M
(Π : X ′ | Y ′) + Iµ1

N×M
(Π : Y ′ | X ′))

=
1

M
· ICostµ1

N×M
(π).

13



This proves our claim.

Remark 3.17. Our lower bound in this section also implies that the randomized communica-
tion complexity of the minimum cut problem in the standard two-player model of Yao [34] (with
no restriction on the number of communication rounds) is Ω(n log log n) bits. Previously, a lower
bound of Ω(n log n) bits was known for deterministic protocols [18] but for randomized protocols,
the best lower bound was Ω(n) (a folklore lower bound based on set disjointness; see, e.g. [13,33]).

The proof of Remark 3.17 is simply by noting that our approach lower bounds the two-player
communication complexity of minimum cut on n-vertex graphs, by that of GTM

N (·) for M = Θ(n)
and N = Θ(log n). Similar to Proposition 3.2 for bounded-round protocols, it is also known that
for unbounded-round protocols, the communication complexity of this problem is Ω(M · logN) bits
(this is obtained by using the Ω(logN) information complexity lower bound of (1-fold) Greater-
Than problem in [11] in the direct sum results of [8, 10] for the M -fold problem). Plugging these
bounds in the reduction implies Remark 3.17.
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