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Abstract

We introduce a new framework for computing approximate maximum weight matchings.
Our primary focus is on the fully dynamic setting, where there is a large gap between the
guarantees of the best known algorithms for computing weighted and unweighted matchings. In
particular, almost all existing weighted matching algorithms are obtained via a reduction to the
unweighted problem that loses a factor of two in the approximation ratio. In contrast, in other
sublinear models, such as the distributed and streaming models, recent work has largely closed
this weighted/unweighted gap.

For bipartite graphs, we almost completely settle this gap with a general reduction that
converts any algorithm for α-approximate unweighted matching to an algorithm for (1 − ε)α-
approximate weighted matching, while only increasing the update time by a log n factor. We
also show that our framework leads to significant improvements for non-bipartite graphs, though
not in the form of a universal reduction. In particular, we show two algorithms for weighted
non-bipartite matching:

• A randomized (Las Vegas) fully dynamic algorithm that maintains a (1/2−ε)-approximate
maximum weight matching in worst-case update time Oε(polylog(n)) with high probabil-
ity against an adaptive adversary. Our bounds are essentially the same as those of the
unweighted algorithm of Wajc [STOC 2020].

• A deterministic fully dynamic algorithm that maintains a (2/3− ε)-approximate maximum
weight matching in amortized update time Õε(m

1/4). Our bounds are essentially the same
as those of the unweighted algorithm of Bernstein and Stein [SODA 2016].

A key feature of our framework is that it uses existing algorithms for unweighted matching as
black-boxes without modification. As a result, our framework is simple and versatile. Moreover,
our framework easily translates to other models, and we use it to derive new results for the
weighted matching problem in streaming and communication complexity models.
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1 Introduction
Computing a maximum matching is a fundamental problem in graph algorithms that has many
applications. In the unweighted version, known as the maximum cardinality matching problem,
the goal is to find a matching with the largest number of edges. In the weighted version, each
edge e has a positive real weight w(e), and the goal is to find a matching maximizing the sum of
its edge weights. This paper primarily focuses on the fully dynamic model, where the algorithm
must maintain a matching in a graph that undergoes edge insertions and deletions. The goal is to
minimize the update time, i.e., the time to process a single edge-change to the graph. For exact
matching, there is a conditional lower bound of Ω(m1/2) update time [AW14, KPP16, HKNS15],
and thus, most research on dynamic matching focuses on maintaining an approximate maximum
matching.

There is a vast literature on approximate fully dynamic matching in unweighted graphs. The
state-of-the-art covers a large range of different trade-offs between update times and approximation
ratios, as well as secondary features such as whether the algorithm is amortized/worst-case or
deterministic/randomized. Progress on weighted matching lags far behind.

A general reduction of Stubbs and Williams [SW17] shows that any α-approximate algorithm for
unweighted matching can be converted to a (1/2−ε)α-approximate algorithm for weighted matching
with nearly the same update time. Almost every state-of-the-art algorithm for weighted matching
comes from applying this reduction to existing unweighted algorithms. As far as we know, the
only exception is an algorithm of Gupta and Peng [GP13] with an O(

√
m) update time and an

(1 − ε) approximation ratio, which can be extended to weighted graphs with essentially the same
bounds. Except for Gupta and Peng’s result, all algorithms for weighted graphs have twice as large
an approximation error as those for unweighted graphs. This gap is very significant in a problem
like dynamic matching, where approximation errors tend to be small constants. Moreover, a 1/2-
approximation is considered a fundamental barrier for matching, and one cannot use the framework
of Stubbs and Williams [SW17] to surmount this barrier in weighted graphs.

By contrast, in related models such as streaming or distributed algorithms, there are several
recent algorithms for weighted matching that match the best known results for unweighted match-
ing. Closing the weighted/unweighted gap in dynamic matching thus remains a fundamental open
problem, posed explicitly by both Stubbs and Williams [SW17] and Wajc [Waj20a].

1.1 Our Contribution

For all the results below, let R be the ratio between the heaviest edge weight ever present in the
graph and the lightest such edge weight.

Bipartite graphs. In bipartite graphs, we effectively close the weighted/unweighted gap by show-
ing a black-box reduction from dynamic weighted matching to dynamic unweighted matching.

Result 1 (See Theorem 3.1). Let ε > 0 be some fixed constant. If there is a fully dynamic
algorithm Au that maintains an α-approximate maximum cardinality matching with update
time Tu, then there is a fully dynamic algorithm Aw that maintains a (1 − ε)α-approximate
maximum weight matching with update time O(Tu · logR). If Au is deterministic, worst-case,
and/or works against an adaptive adversary, then the same is true of Aw.

Our reduction immediately implies many new algorithms for weighted matching, obtaining es-
sentially the same bounds as those for unweighted matching. The black-box nature of our reduction
also makes it highly relevant for future work. We highlight three results in particular:
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• One of the biggest successes of dynamic unweighted matching is the existence of (1/2 − ε)-
approximate algorithms with polylog(n) update time. For example, Bhattacharya, Hen-
zinger, and Nanongkai [BHN16] gave an algorithm that is amortized and deterministic, and
Wajc [Waj20a] gave an algorithm that is worst-case and randomized (and works against adap-
tive adversaries). Our reduction extends both of these results to weighted graphs. Previously,
the analogous results for weighted graphs had approximation ratio (1/4− ε). (There also exist
various unweighted results that achieve a strict 1/2-approximation [BGS18,Sol16] or constant
update time [Sol16,BCH20]; our reduction cannot extend these to weighted graphs due to the
additional (1− ε) in the approximation error and the log(R) factor in the update time.)

• Bernstein and Stein [BS15] gave a deterministic algorithm to maintain a (2/3−ε)-approximate
maximum weight matching in an unweighted bipartite graph with worst-case update time
O(m1/4). Our reduction implies essentially the bounds for weighted graphs. Previously, the
analogous result for weighted graphs had approximation ratio (1/3− ε).

• Behnezhad, Łącki, and Mirrokni [BŁM20] and Wajc [Waj20a] both showed algorithms that
achieve a better-than-1/2 approximation with arbitrarily small polynomial update time. For-
mally, for any fixed δ > 0, there is an algorithm that maintains a (1/2 + Ω(1))-approximate
maximum cardinality matching with update time O(nδ). Our reduction leads to the first
such results for weighted matching, though unlike the unweighted algorithm of [BŁM20], our
extension is limited to bipartite graphs. (The algorithm of [BŁM20] actually has update time
O(∆δ), where ∆ is the maximum degree; it is easy to check that our reduction preserves ∆
up to a constant, and so has the same guarantee.)

Non-bipartite graphs. Our techniques also lead to a general framework for dynamic weighted
matching in non-bipartite graphs, though it is not a universal reduction like Result 1. In particular,
the first two highlighted items above apply to non-bipartite graphs as well.

Result 2 (See Theorem 5.11). For any fixed ε > 0, there exists a fully dynamic algorithm that
maintains a (1/2−ε)-approximate maximum weight matching in update time O(log5(n) log(R)).
The algorithm is worst-case, randomized (Las Vegas), and works against an adaptive adversary.

Result 3 (See Theorem 5.12). For any fixed ε > 0, there exists a fully dynamic algorithm that
maintains a (2/3 − ε)-approximate maximum weight matching in update time O(m1/4 log(R)).
The algorithm is deterministic and amortized.

Our two results each use an algorithm for unweighted matching as a black box: Result 2 uses
the algorithm of Wajc [Waj20a], while Result 3 uses the algorithm of Bernstein and Stein [BS16].
Both results essentially match the guarantees of these unweighted algorithms. Previous weighted
algorithms had twice as high an approximation error.

Additional factors in the update time. All of our guarantees match those of the corresponding
unweighted algorithms almost exactly. There are two minor caveats. Firstly, the update time is
multiplied by O(log(R)), which is O(log(n)) as long as weights are polynomial in n. We can use
the black box of Stubbs and Williams [SW17] to reduce the dependence on R to log log(R); see
Appendix A for details. Secondly, our algorithms have a significantly worse dependence on ε: the
update time is multiplied by (1/ε)O(1/ε). This term is still O(1) for any fixed ε.

1.2 Techniques

Bipartite graphs. Our bipartite result, Result 1, is technically simple: our main contribution
here is showing how to combine ideas from disparate parts of the matching literature.
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We first observe that an existing bucketing scheme of Gupta and Peng [GP13], while not pre-
sented as such, implies a black-box reduction from general weights to integer weights in the range
[1,(1/ε)O(1/ε)]. We then show that in bipartite graphs, a technique called graph unfolding by Kao,
Lam, Sung and Ting [KLST01] allows us to efficiently transform a graph with small weights into an
unweighted graph φ(G) such that the maximum cardinality matching of φ(G) has the same value
as the maximum weight matching in G. We can then use an unweighted matching algorithm Au as
a black box to compute a matching Mu in φ(G). We finally show that this matching Mu of φ(G)
can be “refolded” into a low-degree subgraph R(Mu) ⊆ G that contains a high-weight matching; we
maintain the maximum weight matching of R(Mu) using a simple algorithm for low-degree graphs.

Non-bipartite graphs. Our main technical contribution is for non-bipartite graphs. We rely on
all the same tools above, but the challenge is that in non-bipartite graphs, “refolding” a maximum
matching in φ(G) might incur an extra 2/3 loss in the approximation ratio; this error is analogous
to the integrality gap of non-bipartite graphs. To avoid this loss, we observe that several existing
algorithms for unweighted graphs do not just compute a matching, they compute a subgraph H
with certain natural properties which guarantee that H contains a large matching. The algorithm
of Wajc maintains a subgraph called a kernel [BHI18,Waj20a], while the algorithm of Bernstein
and Stein maintains a subgraph called an edge-degree-constrained subgraph (EDCS) [BS15,BS16].

The key to our non-bipartite results are two new structural theorems which show that both
kernel and EDCS are refolding-approximate, which, loosely speaking, means that they continue to
contain a large matching even after refolding, and so can be used in our new unfolding/refolding
framework without incurring additional error. Our proofs of these structural theorems use the
probabilistic method to effectively reduce the non-bipartite case to the bipartite one.

One advantage of our framework is that it does not require modifying existing unweighted
algorithms to work with weights: we simply run those algorithms as black-boxes in the unfolded
graph φ(G) and show that existing properties of these algorithms combine well with our weighted
framework. As a result, our framework is simple and versatile.

1.3 Application to other models.

None of the ingredients in our framework are specific to the dynamic model; graph unfolding was
previously used only in the regular static setting [KLST01], and our new theorems about refolding-
approximate subgraphs are general structural claims. This paper is focused on dynamic algorithms
because the weighted/unweighted gap was most significant in this model.

Our framework translates seamlessly to other models, and we use it to achieve new results for
weighted matching in the streaming and communication complexity models. All of our results
have essentially the same bounds as the state-of-the-art for unweighted matching; see Section 6 for
details. We note that Gamlath, Kale, Mitrovic, and Svennson [GKMS19] also showed a reduction
from weighted to unweighted matching in the streaming models. Their reduction has the advantage
of applying more directly to non-bipartite graphs, but it is significantly more complex, and thus
works in a narrower range of settings. Most relevantly to our paper, their reduction cannot be
applied in the dynamic setting, and in the streaming setting their reduction increases the number
of passes/rounds by a large constant, whereas our reduction keeps them exactly the same.

2 Preliminaries

Let G = (V,E,w) be a graph with edge weight function w : E → R. We use n = |V | to denote the
number of vertices of G and m = |E| the number of edges. For any U ⊆ V , let NG(U) denote the
set of neighbors of vertices in U in G, and let EG(U) denote the set of edges incident on U . For
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any v ∈ V , let degG(v) denote the degree of the vertex v in G. For any subgraph H of G, we define
NG(U), EH(U) and degH(v) analogously. For any positive integer x, we define [x] = {1, . . . , x}.

Our results have an exponential dependence on 1/ε. Throughout the paper, we will use γε :=
(1/ε)Θ(1/ε), a large constant that we incur in update time through our reductions; see Appendix C for
details. To simplify the notation, we will use Oε(·) to supress the dependence on ε (and therefore
γε).

Dynamic graphs. In the fully dynamic setting, the input is a weighted graph G = (V,E,w)
subject to a sequence of updates, where each update either inserts an edge into or deletes an edge
from G. The goal is to maintain a large matching in G while minimizing the update time, i.e., the
time to process an update. We use R := maxe∈E w(e)/mine∈E w(e) to be the ratio between the
largest edge weight ever contained in G and the smallest edge weight ever contained in G. In this
paper, all the algorithms we obtain have update times that depend on log(R). The dependence can
be reduced to log log(R) via a black-box reduction of Stubbs and Williams [SW17]; see Appendix A
for more details. We use ∆ to denote the maximum degree ever attained by G.

In addition to the update time, a dynamic algorithm may have several other features of interest,
such as whether it works against an adaptive adversary, whether it is amortized or worst-case, and
whether it is deterministic or randomized. We refer to these as the algorithm’s secondary features.

Matchings. A matching M is a subset of edges, no two of which share an endpoint. A maximum
cardinality matching in G is a matching of maximum possible size; we denote this maximum size by
mcm(G). For graphs G with weighted edges, a maximum weight matching is a matching maximum
the sum of its edge weights; we denote this maximum weight by mwm(G). For α ∈ (0, 1], a
matching M is said to be an α-approximate maximum cardinality matching if |M | ≥ α · mcm(G)
and an α-approximate maximum weight matching if w(M) ≥ α ·mwm(G).

In our results, we use a deterministic algorithm that maintains a (1− ε)-approximate maximum
weight matching in a low-degree graph. The algorithm is a trivial extension of an existing unweighted
algorithm of Gupta and Peng [GP13]; see Appendix B for formal proof.

Theorem 2.1 ([GP13]). Let G be a dynamic weighted graph, with weights in range [W ]. For
ε ∈ (0, 1), there exists a fully dynamic deterministic algorithm that maintains a (1− ε)-approximate
maximum weight matching in G with worst-case update time O(∆W 2/ε2).

Probabilistic tools. We will use the following standard variant of the Chernoff bound.

Proposition 2.2 (Chernoff bound). Let Z1, . . . , Zn be negatively correlated random variables such
that Zi ∈ [0, 1] for all i ∈ [n], and let Z =

∑n
i=1 Zi. If E [Z] ≤ λ, then for any δ > 0,

Pr (|Z − E [Z]| ≥ δ · λ) ≤ 2 · exp
(
−δ2λ/3

)
.

We also need the following version of the Lovász Local Lemma (LLL).

Proposition 2.3 (Lovász Local Lemma). Let p ∈ (0, 1) and let d ≥ 1. Suppose E1, . . . , Et are t
events such that Pr (Ei) ≤ p for all i ∈ [t] and each Ei is mutually independent of all Ej except (at
most) d other events Ej. If p · (d+ 1) < 1/e, then Pr

(⋂n
i=1 Ēi

)
> 0.

3 A New Reduction to Unweighted Matchings in Bipartite Graphs
The main theorem of this section is the following formalization of Result 1, which leverages a black-
box reduction from weighted bipartite matching to unweighted bipartite matching. Recall that
γε = (1/ε)Θ(1/ε); for any fixed ε, we have γε = O(1).
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Theorem 3.1. Let G be a weighted bipartite graph and let ε > 0. If there is an algorithm Au
that maintains an α-approximate maximum cardinality matching in a dynamic unweighted bipar-
tite graph G with update time Tu(n,m,α), then there exists an algorithm Aw that maintains a
(1 − ε)α-approximate maximum weight matching in weighted bipartite graphs with update time
Oε(Tu(γεn, γεm,α) · log(R)). Further, the secondary features of Aw are same as those of Au.

3.1 Previous Work

Graph unfolding. We start by describing the reduction from weighted to unweighted bipartite
matchings through a transformation called graph unfolding due to Kao et al. [KLST01]. Although
our focus in this section is bipartite graphs, we note that graph unfolding can be applied to non-
bipartite graphs as well, which we will consider in Section 4.
Definition 3.2. Let G = (V,E,w) be a graph with non-negative integral edge weights. The unfolded
graph φ(G) is an unweighted graph defined as follows. For each node u ∈ V (G), there are βu copies
of u in φ(G), denoted by u1, . . . , uβu, where βu = maxe3uw(e). Corresponding to each edge e = uv
in G, there are w(e) edges

{
uivw(e)−i+1

}
i∈[w(e)]

in φ(G).

Observe that unfolding a subgraph K ⊆ G produces a subgraph φ(K) ⊆ φ(G); in particular,
unfolding a (weighted) matching M of G produces an (unweighted) matching φ(M) of φ(G). The
key property of graph unfolding in bipartite graphs is the following:
Theorem 3.3 ([KLST01]). If G is a weighted bipartite graph, then mwm(G) = mcm(φ(G)).

The assumption that G is bipartite in Theorem 3.3 is necessary; if the graph is not bipartite,
mcm(φ(G)) could be up to 1.5 times larger than mwm(G), exhibited by a triangle with all edges of
weight 2. Nonetheless, we will later see that one can sensibly apply graph unfolding to nonbipartite
graphs.

We will often want to “reverse” the operation of unfolding to obtain a subgraph back in G, an
operation we call graph refolding.
Definition 3.4. Let G be a weighted graph and let H ⊆ φ(G). The refolded graph R(H) of H has
vertex set V and edges E(R(H)) =

{
uv ∈ G : uivw(uv)−i+1 ∈ H for some i ∈ [w(uv)]

}
.

Observation 3.5. Let G be a weighted bipartite graph. If M is an α-approximate maximum cardi-
nality matching of φ(G), then mwm(R(M)) ≥ α ·mwm(G).

Proof. Since R(M) is bipartite, by Theorem 3.3, mwm(R(M)) = mcm(φ(R(M))). Observing that
that M ⊆ φ(R(M)), we further have mcm(φ(R(M))) ≥ |M |. Finally, since M is α-approximate in
φ(G), it follows that |M | ≥ α ·mcm(φ(G)) = α ·mwm(G), where we have used Theorem 3.3 again
to justify the last equality.

The reduction of Gupta and Peng. We now state a reduction of Gupta and Peng [GP13] that
allows us to effectively assume the maximum weight of the input graph is a large constant. In their
paper, Gupta and Peng do not emphasize that their reduction can be used as a black box; indeed,
they only apply their reduction to a specific weighted matching algorithm. But without changing
their argument, their techniques apply to any weighted matching algorithm, giving the following
theorem. See the appendix for more details.
Theorem 3.6 ([GP13]). Let G be a weighted graph and let ε ∈ (0, 1/2). If there is an algo-
rithm A that maintains an α-approximate maximum weight matching in a graph whose weights are
in {1, 2, . . . ,W} with update time T (n,m,α,W ), then there is an algorithm A′ that maintains a
(1 − ε)α-approximate maximum weight matching in G in update time Oε(T (n,m,α, γε) · log(R)).
Moreover, A has the same secondary features as A′.
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3.2 A New Reduction to Unweighted Matching via Graph Unfolding

We now state the core of our reduction. Let Au be a dynamic algorithm for maintaining an α-
approximate maximum cardinality matching in update time Tu(n,m,α), and let Ab be the dynamic
algorithm for maintaining a maximum weight matching in bounded-degree weighted graphs implied
by Theorem 2.1. We now give our algorithm A′w that, using Au and Ab as black boxes, maintains
a (1− ε)α-approximate maximum weight matching in a dynamic weighted graph G whose weights
are all in the set [W ]. Our reduction will incur a large dependence on W which we reduce later
using Theorem 3.6.

ALGORITHM 1: BipartiteReduction
Result: Maintain a (1− ε)α-approximate maximum weight matching in a bipartite graph

with weights [W ].
Input: An insertion or deletion of edge uv.

1 Insert (delete) edges uivw(u,v)−i in (from) φ(G) for i ∈ [w(uv)].
2 Use Au to maintain a matching Mu of φ(G).
3 Update R(Mu) by tracking updates to Mu.
4 Use Ab to maintain a weighted matching M of R(Mu).

Lemma 3.7. The matching M maintained by A′w is a (1 − ε)α-approximate maximum weight
matching.

Proof. By the guarantees of Au, the matchingMu of φ(G) is α-approximate. Observation 3.5 states
that mwm(R(Mu)) ≥ α ·mwm(G). Finally, Ab maintains a weighted matching M such that

w(M) ≥ (1− ε) ·mwm(R(Mu)) ≥ (1− ε)α ·mwm(G).

Lemma 3.8. The update time of Algorithm 1 is O(W 4 · Tu(nW,mW,α)/ε2).

Proof. First observe that for every edge uv that is updated in G, at most W edges are updated in
φ(G). By the update time of Au, it takes W ·Tu(nW,mW,α) total time to maintain Mu after these
W updates to φ(G). Clearly the number of changes to Mu cannot be more than the total update
time, and thus there are also at most W · Tu(nW,mW,α) changes to Mu.

Each update to Mu in turn triggers at most one update to R(Mu). Since we use Ab to process
updates to R(Mu) and the maximum degree of R(Mu) is W , the update time of Ab per udpate to
R(Mu) is O(W 3/ε2), so the update time per update to G is O(W 4 · Tu(nW,mW,α)/ε2) (follows
from Theorem 2.1).

To reduce the dependence of A′w on W , we apply the bucketing scheme of Gupta and Peng
(Theorem 3.6), as illustrated in the following proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose Tu is the runtime ofAu. Then, the previous two lemmas, Lemma 3.7
and Lemma 3.8, state that A′w maintains a (1 − ε)α-approximate maximum weight matching in a
weighted graph G in O(W 4 · Tu(nW,mW,α)/ε2) update time. Applying Theorem 3.6 to A′w with
T (n,m,α,W ) = O(W 4 ·Tu(nW,mW,α)/ε2), we obtain an algorithm Aw that maintains a (1−2ε)α-
approximate maximum weight matching in update time Oε(Tu(γεn, γεm,α) · log(R)).

All the subroutines we use—folding, refolding, Ab, and the black box of Theorem 3.6— are
worst-case and deterministic. Thus, the secondary features of Au carry over to Aw.
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4 Non-Bipartite Graphs and Refolding-Approximate Subgraphs
As noted in the previous section, unfolding a non-bipartite graph G poses additional issues. Since
a matching in φ(G) is akin to a fractional matching in G, the unfolded graph φ(G) may have a
matching up to 1.5 times larger than the maximum weight matching in G. At the same time, a
maximum cardinality matching in φ(G) may refold into a graph that does not contain a maximum
weight matching of G. In other words, both Theorem 3.3 and Observation 3.5 are false when G is
not bipartite.

4.1 A New Reduction for Weighted Matchings in General Graphs

In this section, we show that if a subgraph H of φ(G) has sufficient structure, then R(H) may still
contain a good matching. This motivates the following definition.

Definition 4.1. Let G be a weighted graph. A subgraph H of φ(G) is α-refolding-approximate if

mwm(R(H)) ≥ α ·mwm(G).

In Section 5, we will show that certain natural subgraphs H have the property that, even in
non-bipartite graphs, they incur only a (1 − ε)-factor-loss in approximation after refolding, rather
than the generic 2/3-factor. For example, we will show that if H is a kernel of φ(G) (defined in
Section 5), then H contains a (1/2− ε)-approximate maximum cardinality matching in φ(G) and is
also (1/2− ε)-refolding-approximate. The existence of such graphs is itself not a priori obvious and
is one of the key contributions of this paper.

We leave these structural theorems for the next subsection. Here, we formalize why maintaining
a matching in a weighted graph can be reduced to maintaining a refolding-approximate subgraph
of an unweighted graph. We maintain such subgraphs by running existing unweighted algorithms
as black-boxes on the unfolded graph φ(G). Note that a single update to a graph G with weights in
[W ] can cause up to W updates to φ(G); each of these updates might then cause the unweighted
algorithm on φ(G) to make multiple updates to H, the α-refolding-approximate subgraph. To
bound this cascade of updates, we introduce the following definitions.

Definition 4.2. Let A be an algorithm that maintains a subgraph H of an unweighted graph G. We
say that A has update ratio r if any update to G results in at most r changes to H. We say that
is has amortized update ratio r if for any large enough sequence S of edge changes (insertions or
deletions) to G, the algorithm makes at most r |S| edge changes to H.

Definition 4.3. Let G be any weighted graph. Let A be an algorithm that maintains a subgraph H
of φ(G). We say that A has unfolded update ratio r if any update to G results in at most r changes
to H. We define unfolded amortized update ratio analogously.

We now state our main theorem, which converts any algorithm that maintains an α-refolding-
approximate subgraph of φ(G) into one that maintains α(1− ε)-approximate matching of G.

Theorem 4.4. Let G be a graph with weights in [W ] and let ε > 0. Let m and n denote the number
of edges and vertices in G, respectively. If there is an algorithm Bu that maintains an α-refolding-
approximate subgraph H of φ(G) over updates to G with update time Tu(n,m,α,W ) per update to G
and unfolded update ratio Cu(n,m,α,W ), then there is an algorithm Bw that maintains a (1− ε)α-
approximate maximum weight matching in G with update time Oε((Tu + ∆HCu)(γεn, γεm,α, γε) ·
log(R)). Further, the secondary features of Bu extend over to Bw as well. (For Bw to be worst-case,
both update time and unfolded update ratio of Bu must be worst-case.)
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Towards proving Theorem 4.4, we describe an algorithm B′w that, given as input a dynamic
graph G with weights in [W ], uses Bu and Ab as a subroutine and maintains a (1−ε)α-approximate
maximum weight matching at all times. The update time has a polynomial dependence on W ,
which we later convert into a large constant using the reduction of Gupta and Peng (Theorem 3.6).

ALGORITHM 2: NonBipartiteReduction
Result: Maintain a (1− ε)α-approximate maximum weight matching in a (possibly

non-bipartite) graph with weights [W ].
Input: An insertion or deletion of edge uv.

1 Insert (delete) edges uivw(uv)−i+1 into (from) φ(G) for i ∈ [w(uv)].
2 Use Bu to maintain an α-refolding-approximate subgraph H of φ(G).
3 Update R(H) by tracking updates to H.
4 Use Ab to maintain a weighted matching M of R(H).

Lemma 4.5. The matching M maintained by B′w is a (1 − ε)α-approximate maximum weight
matching of G.

Proof. By Definition 4.1, the subgraph R(H) maintained with the help of Bu contains an α-
approximate maximum weight matching. Thus, running Ab on R(H) finds a matching M such
that w(M) ≥ (1− ε) ·mwm(R(H)) ≥ (1− ε)α ·mwm(G).

Lemma 4.6. The update time of Algorithm 2 is O(Tu(n,m,α,W ) +W 3∆H · Cu(n,m,α,W )/ε2).

Proof. The proof is similar to the proof of Lemma 3.8, except now we use the update ratio to bound
the number of changes to R(H).

After an update uv in G, it takes O(Tu(n,m,α,W )) time to maintain H. Since Cu(n,m,α,W )
is the unfolded update ratio, the number of changes triggered in H due to an update in G is at most
Cu(n,m,α,W ). Note that each update in H can cause at most one update in R(H). Additionally,
the maximum degree of R(H) is at mostW ·∆H . So the total time taken by Algorithm 2 in response
to a single update to G is O(Tu(n,m,α,W ) +W 3∆H · Cu(n,m,α,W )/ε2).

Proof of Theorem 4.4. The two previous lemmas, Lemma 4.5 and Lemma 4.6, state that B′w main-
tains a (1−ε)α-approximate maximum weight matching inO(Tu(n,m,α,W )+W 3∆H ·Cu(n,m,α,W )/ε2)
update time. Applying Theorem 3.6 to B′w, we obtain an algorithm Bw that maintains a (1− 2ε)α-
approximate maximum weight matching in update time Oε((Tu + ∆H · Cu)(n,m,α, γε) · log(R)).

All the subroutines we use—folding, refolding, Ab and the black box of Theorem 3.6—are worst-
case and deterministic. Thus, the secondary features of Au carry over to Aw.

5 Kernels and EDCS are Refolding Approximate Subgraphs
In this section, we prove that two existing matching sparsifiers for unweighted graphs—kernels and
edge-degree-constrained subgraphs (EDCS)—are refolding approximate.

5.1 Existing Work in Unweighted Graphs

We first review existing work on the two sparsifiers and their properties in unweighted graphs.
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Kernels. The first matching sparsifier we consider is the kernel, introduced in [BHI18].

Definition 5.1. A subgraph H of an unweighted graph G is a (d, ε)-kernel if the following two
properties hold:

1. for every vertex v ∈ G we have deg(v) ≤ d, and
2. for every edge uv ∈ G \H we have max{deg(u), deg(v)} ≥ (1− ε)d.

Arar, Chechik, Cohen, Stein and Wajc [ACC+18] proved that every (d, ε)-kernel contains a(
1−ε

2(1+1/d)

)
-approximate maximum cardinality matching. In bipartite graphs, following their proof

exactly and using that bipartite graphs are ∆-edge-colorable—where ∆ is the maximum degree of
the graph—gives the following simpler (independent of d) approximation ratio.

Theorem 5.2 ([ACC+18]). Let G be an unweighted bipartite graph, let d ∈ N, and let ε > 0. If H
is a (d, ε)-kernel of G, then mcm(H) ≥ 1−ε

2 ·mcm(G).

Recently, Wajc [Waj20a] showed that kernels can be maintained in polylog(n) update time
against adaptive adversaries. More precisely, he proved the following theorem.

Theorem 5.3 ([Waj20a]). Let G be an unweighted graph and let ε ∈ (0, 1/2). For d = Θ(log n ·
poly(1/ε)), there is a randomized (Las Vegas) algorithm that maintains a (d, ε)-kernel of G in worst-
case update time O((log4 n+ d log n) ·poly(1/ε)) with high probability against an adaptive adversary.

Edge-degree-constrained subgraphs (EDCS). Another matching sparsifier used in dynamic
graph algorithms is the edge-degree-constrained subgraph (EDCS), introduced in [BS15].

Definition 5.4. A subgraph H of an unweighted graph G is a (d, ε)-EDCS if the following two
properties hold:

1. for every edge uv ∈ E(H) we have deg(u) + deg(v) ≤ d, and
2. for every edge uv ∈ E(G) \ E(H) we have deg(u) + deg(v) ≥ (1− ε)d.

The EDCS strikes a different trade-off from the kernel: it obtains a (2/3− ε)-approximate maxi-
mum cardinality matching and can be maintained in O(m1/4/ε5/2) update time. The approximation
ratio of the EDCS in bipartite graphs was established in [BS15]. Later, it was shown by the same
authors [BS16] that the EDCS obtains the same (2/3− ε) approximation ratio in general graphs. A
simpler proof with improved parameters was presented in [AB19].

Theorem 5.5 ([BS15,AB19]). Let G be an unweighted bipartite graph, let ε < 1/2, and let d ≥ 16/ε.
If H is a (d, ε)-EDCS of G, then mcm(H) ≥ (2/3− 4ε)mcm(G).

The following theorem, proved in [BS16], says that, with the appropriate choice of d, an EDCS
can be maintained in the fully dynamic setting in update time sublinear in the number of vertices.

Theorem 5.6 ([BS16]). Let G be an unweighted graph. For d ≥ 36/ε, there is a deterministic
algorithm that maintains a (d, ε)-EDCS of G in O(

√
m/(ε2d)) amortized update time with O(1/ε)

amortized update ratio. (Note that this Theorem can be applied with d a function of m such as
d = m1/4; this was done in the algorithm of [BS16] and we apply their algorithm as a black box.)

5.2 Kernels are Refolding-Approximate

In this section, we show that kernels are nearly 1/2-refolding approximate—see Theorem 5.9 for the
precise statement. Our proof relies an the existence of a partition of vertices of G that (1) preserves
the maximum weight matching and (2) roughly halves the degrees of all vertices in the unfolded
graph φ(G). The existence of such a partition was established for unweighted graphs in [AB19];
here we generalize their proof.
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Lemma 5.7. Let G be a weighted graph with maximum weight W , let δ ∈ (0, 1/2), and let d ≥
36δ−2 log(W/δ). For any subgraph H of φ(G) with maximum degree at most d, there exists a
bipartite subgraph G̃ of G such that, setting H̃ := H ∩ φ(G̃),

1. mcm(φ(G̃)) = mwm(G), and

2. |degH̃(v)− degH(v)/2| ≤ δd for all vertices v ∈ V (H).

Proof. The proof is based on the probabilistic method. Fix a maximum weight matching M∗ in
G. We produce a random bipartite subgraph G̃ = (L ∪ R, Ẽ) of G as follows. For each edge
matched by M∗, we randomly and choose one endpoint to be in L and then put the other endpoint
in R, independent of all other choices. For every vertex unmatched by M∗, we place it in L with
probability 1/2 and in R with probability 1/2, again independent of all other choices. The edges Ẽ
of G̃ are precisely those edges with one endpoint in L and one endpoint in R.

The bipartite subgraph G̃ induces a corresponding bipartite subgraph φ(G̃) in the unfolded
space. Since M∗ ⊆ G̃ by construction and since G̃ is bipartite, mwm(G) = w(M∗) = mwm(G̃) =
mcm(φ(G̃)), as desired. (The last inequality follows from Theorem 3.3, since G̃ is bipartite.)

Now let H be any subgraph of φ(G) whose maximum degree is at most d. It suffices to show that
with nonzero probability, H̃ := H ∩ φ(G̃) satisfies the second condition. For each vertex v ∈ φ(G),
let Ev be the “bad” event that |degH̃(v)− degH(v)/2| > δd, and let Xv := degH̃(v). Notice that we
can write Xv as the sum of independent indicators; each edge uw ∈M∗ ∩H[v ∪NH(v)] contributes
1 to Xv and every neighbor u not matched to a vertex in v∪NH(v) contributes 1 if it is not assigned
to the same side of the bipartition as v. Thus, Xv is the sum of independent Bernoullis, and further,
E [Xv] = (degH(v) + 1)/2 if v is unmatched by M∗ and otherwise E [Xv] = degH(v)/2. Thus the
bad event Ev simply occurs when Xv is not sufficiently concentrated around its mean.

AsXv is the sum of independent Bernoullis, we may bound its deviation with a standard Chernoff
bound, and thus,

Pr(Ev) = Pr(| degH̃(v)− degH(v)/2| ≥ δd)

≤ Pr(|Xv − E [Xv] | ≥ δd/2)

≤ 2 exp(−δ2d/12)

≤ 2 exp(−3 log(W/δ))

≤ 2 exp(−3 log(dW ))

= 2(dW )−3.

We now want to apply the Lovász Local Lemma, and so we must argue that Ev is independent
of all but relatively few other events. Let ui, wj ∈ H. If u and w (vertices in G) are not within two
hops of each other in G, then Eui and Ewj are independent by construction of φ(G̃). Thus, each Ev
is independent of all but at most (dW )2 other bad events, and since 2(dW )−3 · ((dW )2 + 1) ≤ 1/e,
the Lovász Local Lemma states that

⋂
v∈φ(G)

Ev occurs with nonzero probability.

Observation 5.8. Let G be a weighted bipartite graph. If H is a subgraph of φ(G), then H ⊆
φ(R(H)). It follows that mcm(H) ≤ mcm(φ(R(H))) = mwm(R(H)), where Theorem 3.3 justifies
the last equality.

Theorem 5.9. Let G be a (possibly non-bipartite) graph with edge weights in [W ] and let d ≥
4 · 36ε−2 log(2W/ε). If H is a (d, ε)-kernel of φ(G), then H is (1/2− 3ε/2)-refolding-approximate.
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Proof. Let G̃ be the bipartite subgraph of G promised by Lemma 5.7, and let H̃ = H ∩ φ(G̃).
Observe that mwm(R(H̃)) ≤ mwm(R(H)) because R(H̃) ⊆ R(H). We now show that H̃ has a
large matching by showing that it is a kernel of φ(G̃).

Suppose v ∈ V (H). By taking δ = ε/2 and applying Lemma 5.7, we have

degH̃(v) ≤ degH(v)/2 + δd ≤ (1 + ε)d/2.

Now suppose uv ∈ φ(G̃) \ H̃. Since uv 6∈ H̃ but u and v are on opposite sides of the bipartition, the
edge uv ∈ G \H. Because H is a (d, ε)-kernel, one of its endpoints has degree at least (1− ε)d in
H; we may assume w.l.og that v is that endpoint. Again applying Lemma 5.7 we have that in H̃:

degH̃(v) ≥ degH(v)/2− δd ≥ (1− 2ε)d/2 ≥ (1− 3ε)(1 + ε)d/2.

Thus, H̃ is a ((1 + ε)d/2, 3ε)-kernel of φ(G̃).
Putting everything together,

mwm(R(H)) ≥ mcm(H) (by Observation 5.8)

≥ mcm(H̃)

≥ 1− 3ε

2
·mcm(φ(G̃)) (by Theorem 5.2)

=
1− 3ε

2
·mwm(G).

5.3 EDCS are Refolding-Approximate

Theorem 5.10. Let G be a (possibly non-bipartite) graph with weights in [W ] and let d ≥ 16 ·
36ε−2 log(4W/ε). If H is a (d, ε)-EDCS of φ(G), then H is (2/3− 12ε)-refolding-approximate.

Proof. Let G̃ be the bipartite subgraph of G promised by Lemma 5.7, and let H̃ = H ∩ φ(G̃).
Observe that mwm(R(H̃)) ≤ mwm(R(H)) because R(H̃) ⊆ R(H). We now show that H̃ has a
large matching by showing that it is an EDCS of φ(G̃).

Suppose uv ∈ H̃. By Lemma 10, taking δ = ε/4, we have

degH̃(uv) ≤ degH(uv)/2 + 2δd ≤ (1 + ε)d/2.

Now suppose uv ∈ φ(G̃) \ H̃. Since uv ∈ φ(G) \H and H is a (d, ε)-EDCS, we have

degH̃(uv) ≥ degH(uv)/2− 2δd ≥ (1− 2ε)d/2.

Finally, since (1− 2ε) ≥ (1− 3ε)(1 + ε), it follows that H̃ is a ((1 + ε)d/2, 3ε)-EDCS of G̃.
Now

mwm(R(H)) ≥ mcm(H) (by Observation 5.8)

≥ mcm(H̃)

≥ (2/3− 12ε)mcm(φ(G̃)) (by Theorem 5.5)
= (2/3− 12ε)mwm(G).

5.4 Results on Dynamic Weighted Matching in General Graphs

Since kernels and EDCS are refolding-approximate, we can can apply Theorem 4.4 to obtain algo-
rithms for weighted non-bipartite graphs. More precisely, we have the following two theorems.
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Theorem 5.11. Let G be a (possibly non-bipartite) weighted graph and let ε > 0. There is random-
ized (Las Vegas) algorithm that maintains a (1/2 − ε)-approximate maximum weight matching with
high probability and against an adaptive adversary in worst-case update time Oε(log5(n) log(R)).

Proof. Choosing d = Θ(log(n) · poly(1/ε)), we can compute a (d, ε)-kernel H of φ(G) using the
algorithm of Theorem 5.3 in Tu = O(log4(W ·n)·poly(1/ε)) worst-case update time. By Theorem 5.9,
H is (1/2 − ε)-refolding-approximate. Since each update in G leads to at most W updates in
φ(G), and since the number of updates to H is bounded by Tu, we have Cu = W · Tu. Applying
Theorem 4.4, there is an algorithm to maintain a (1/2− ε)-approximate maximum weight matching
of G in Oε(log5(n) log(R)) worst-case update time that works against an adaptive adversary with
high probability.

Theorem 5.12. Let G be a dynamic weighted (not necessarily bipartite) graph and let ε > 0. There
is deterministic algorithm that maintains a (2/3 − ε)-approximate maximum weight matching with
amortized update time Oε(m

1/4 log(R)).

Proof. Choosing d = 16 · 36ε−2 log(4W/ε) ·m1/4, we can compute an EDCS H of φ(G) with update
time O((m ·W )1/4) and amortized update ratio O(1/ε) by Theorem 5.6. However, these update times
and update ratios are with respect to updates in φ(G). As discussed before, each update inG triggers
at mostW updates in φ(G). So the update time and the amortized refolding update ratio for H are
O((m ·W )1/4 ·W ) and O(W/ε), respectively. Applying Theorem 4.4 with Tu = O((m ·W )1/4 ·W ) and
Cu = O(W/ε), and from Theorem 5.10, we have an algorithm that maintains a (2/3− 2ε)-refolding-
approximate subgraph with update time Oε(m

1/4 log(R)).

6 Further Applications
The framework introduced in this paper is applicable beyond the dynamic setting. Indeed, all of the
tools we use are very general and easily translate to a wide variety of models. In this section, we show
how our framework can be used to obtain new results for weighted matching in the semi-streaming
model and in the one-way two-player communication complexity model.

6.1 Previous Work: Revisiting Gupta and Peng’s Reduction

One of the basic tools of our framework was the bucketing scheme of Gupta and Peng [GP13] (see
Theorem 3.6), which allowed us to effectively reduce edge weights to a large constant. Although
they described this scheme in the context of a particular algorithm for dynamic graphs, it is in
fact extremely general and can be applied to almost any model. In this subsection, we state the
consequences of this reduction to different models of interest; see Appendix C for the proofs of these
theorems.

Theorem 6.1. If there is a p-pass semi-streaming algorithm Aw to compute an α-approximate max-
imum weight matching in a graph whose edge weights are in [W ] and that uses space S(n,m,W,α),
then there is an p-pass semi-streaming algorithm A′w to compute a (1− ε)α-approximate maximum
weight matching with weights in R+ using space O(S(n,m, γε, α) log(R)). Further, if Aw works for
vertex-order edge arrivals or random-order edge arrivals, then so does A′w.

Theorem 6.2. If there exists a one-way communication complexity protocol for the maximum weight
matching problem in a graph with edge weights in [W ] using C(n,m,W,α) bits of communication,
then there exists a protocol to compute a (1 − ε)α-approximate maximum weight matching with
weights in R+ using O(C(n,m, γε, α) log(R)) bits of communication.
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6.2 Semi-Streaming in Bipartite Graphs

Model definition. In the semi-streaming model, the goal is to solve a problem over a stream of the
graph’s edges while only using Õ(n) space. The main focus is typically on one-pass algorithms, which
only read the stream of edges once. For many problems, including maximum weight matchings,
strong barriers are known for one-pass algorithms (see, e.g., [GKK12,Kap13]) and so p-pass algo-
rithms for p > 1 have also received much attention (see e.g [AG11,EKS09,KMM12,EHM16,Kon18]).

The semi-streaming model is doubly-worst-case in the sense that algorithms should work both for
any input graph and for any stream ordering of that graph’s edges. In many instances, requiring that
the algorithm works against an adversarially-ordered stream unnecessarily restrictive. A standard
relaxation is to assume that the edges arrive in random order. Another relaxation, for bipartite
graphs, is to assume a vertex arrival order, where each vertex on a fixed side of the bipartite arrives
with all its incident edges. Thus, the edges are streamed to the algorithm from the adjacency list
of one side of the bipartition.

Our results. As in the dynamic graph setting, we can use our framework to show that any
semi-streaming algorithm for approximate unweighted matching can be converted to one for ap-
proximate weighted matching with exactly the same number of passes and essentially the same
space/approximation bounds. The approach is the same: we first use graph unfolding to com-
pute a maximum weight matching in a bipartite graph whose weights are in [W ] and then apply
Theorem 6.1 to reduce the dependence on W . In particular, we have the following theorem.

Theorem 6.3. Let G be a weighted bipartite graph and let ε ∈ (0, 1/2). If there exists a p-pass
semi-streaming algorithm Au to compute an α-approximate maximum cardinality matching using
Su(n,m,α) space, then there exists a p-pass semi-streaming algorithm Aw to compute an (1− ε)α-
approximate maximum weight matching using Oε(Su(γεn, γεm,α) log(R)) space. Further, if Au
works for vertex-order arrivals, then so does Aw.

Remark 6.4. We note that although the bucketing scheme of Gupta and Peng can also be used for
random edge arrivals (Theorem 6.1), our reduction in Theorem 6.3 cannot. The reason is that even
if edges arrive in a random order in G, the order will not be random in the unfolded graph φ(G).
See the conclusion section for a more detailed discussion.

Proof. Let Au be the unweighted matching algorithm that uses space Su(n,m,α). We describe how
to compute an α-approximate maximum weight matching in a graph whose edge weights are in [W ]
using Au. On the arrival of edge uv, we stream the corresponding edges {uivw(uv)−i+1}i∈[w(uv)] of
φ(G) to Au. At the end of the stream, Au reports an α-approximate maximum weight matching
Mφ in φ(G) using Su(nW,mW,α) space. By Observation 3.5, the graph R(Mφ)—which we can
easily recover from Mφ—contains an α-approximate maximum weight matching of G. Since we can
compute the maximum weight matching of G offline, this completes the reduction.

Notice that to preserve vertex-order, we cannot just stream the unfolded edges as is suggested
above. However, by storing all the edges incident to a single vertex in G in memory for the duration
of that vertex’s arrival, we can produce the corresponding vertex-order stream in φ(G).

Thus, using Au, we have obtained an algorithm to compute a maximum weight matching in a
graph with edge weights in [W ]. To finish the proof, we apply Theorem 6.1.

Applications of our results. Theorem 6.3 has several consequences for computing maximum
weight matchings in the streaming setting:

13



• It is a major open question whether there is a one-pass semi-streaming algorithm to compute
a better-than-1/2-approximation to the maximum cardinality matching problem. Our theorem
shows that any such algorithm would also break the 1/2-approximation barrier for weighted
bipartite graphs.

• For vertex arrivals, one can compute significantly better than a 1/2-approximation. A sem-
inal result of Karp, Vazirani, and Vazirani [KVV90] showed how to compute a (1 − 1/e)-
approximation in vertex-ordered streams with randomization (indeed, their algorithm was
designed for the more restrictive online setting). More recently, Goel, Khanna, and Kapralov
[GKK12] gave a deterministic single-pass algorithm for vertex-ordered streams with the same
approximation guarantee. Kapralov [Kap13] then showed these algorithms are tight: no one-
pass algorithm can obtain a better-than-(1 − 1/e)-approximation using Õ(n) space. Utiliz-
ing our reduction, we effectively settle the problem of weighted matchings in vertex-ordered
streams: our algorithm computes a a (1 − 1/e − ε)-approximation in Õ(n) space. To the
best of our knowlege, no previous algorithm obtained a better-than-1/2-approximation in the
vertex-arrival setting with edge weights.

• There are several semi-streaming algorithms for unweighted graphs that go beyond the 1/2-
approximation barrier by using 2 or 3 passes instead of a single pass [KMM12,Kon18,EHM16].
Our Theorem 6.3 yields algorithms for weighted bipartite graphs with essentially the same
bounds. As far as we know, these are the first such results for weighted graphs.

6.3 One-Way Communication Complexity in Non-Bipartite Graphs

Model definition. In the one-way two-player communication complexity model, Alice and Bob
each have some portion of the input, and the goal is to compute some function of the entire input.
Alice can talk to Bob, but Bob cannot talk back to Alice; all communication flows in one direction.
Understanding problems in the one-way two-player model is often seen as a first step to under-
standing them in more difficult models such as the streaming model, and thus this communication
complexity model has received a lot of recent attention.

For the maximum weight matching problem in the one-way two-party model, Alice receives a
weighted graph GA = (V,EA), Bob receives a weighted graph GB = (V,EB), and their goal is for
Bob to compute an approximate maximum weight matching of the graph G = (V,EA ∪ EB).

Previous work. The one-way communication complexity of maximummatchings was first studied
by [GKK12], who gave a one-way protocol for bipartite graphs that achieved a 2/3-approximation
using O(n log n) bits of communication. Further, they showed that any one-way protocol computing
a (2/3 + δ)-approximation for δ > 0 requires n1+Ω(1/ log logn) bits of communication, showing that
there is a sharp threshold at approximation factor 2/3. In [AB19], the upper bound of [GKK12]
was extended to non-bipartite graphs, though the approximation factor obatined is 2/3− ε instead
of strictly 2/3. (We state all results in terms of the number of bits communicated, rather than the
number of words.)

Within the proof of their upper bound, [AB19] establishes the following structural result, which
we will need here (see Lemma 12 in that paper).

Lemma 6.5 ([AB19]). Let G be an unweighted graph and let GA and GB be a partition of G into
two subgraphs. Further, let M be a matching of GA ∪GB, let ε > 0, and let d ≥ 64ε−2 log(1/ε). If
H is a (d, ε/2)-EDCS of GA, then H ∪GB contains a (d, ε)-EDCS of M ∪GB.

Our results. We show that the one-way communication complexity of the weighted matching
problem is essentially the same as the one-way communication complexity of unweighted matching,
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provided that the ratio of the maximum and minimum edge weight is bounded by a polynomial in
n. More precisely, we have the following theorem.

Theorem 6.6. Let G be a weighted graph and let ε ∈ (0, 1/2). There is a one-way communication
protocol to compute a (2/3 − ε)-approximate maximum weight matching using Oε(n log(n) log(R))
bits of communication.

Proof. We describe a simple protocol to compute an approximate maximum weight matching for
graphs whose edge weights lie in [W ]. Let d = 16 · 36ε−2 log(4W/ε).

The protocol is as follows. Alice unfolds her input graph, computes a (d, ε/2)-EDCS HA and
sends HA to Bob. Bob unfolds his input graph and adds HA to φ(GB) to obtain a subgraph K of
φ(G). Bob then computes R(K) (he knows the original weights from, e.g., the labels of the vertices
in φ(G)) and computes a maximum weight matching in R(K).

Since Alice sends Bob O(nWd) edges of a graph on at most nW vertices, the protocol uses
O(nW log(nW )ε−2 log(W/ε)) bits of communication. We now prove correctness of the protocol.
Let M∗ be a maximum weight matching of G. By Lemma 6.5, the graph K contains a (d, ε)-EDCS
H of φ(M∗) ∪ φ(GB) = φ(M∗ ∪ GB). By Theorem 5.10, the refolded graph R(H) contains a
(2/3 − 12ε)-approximate maximum weight matching of the graph M∗ ∪ GB. Thus, since K ⊇ H,
we have

mwm(R(K)) ≥ mwm(R(H))

≥ (2/3− 12ε)mwm(M∗ ∪GB)

= (2/3− 12ε)mwm(G).

To complete the proof, we re-parameterize ε and apply Theorem 6.2.

7 Conclusion and Open Problems
In this paper, we developed a new framework for weighted matching that allows us to use existing
unweighted algorithms without modification. In bipartite graphs, this framework effectively settles
the weighted/unweighted gap for approximate matching, because it allows us to convert any algo-
rithm for unweighted matching into one for weighted matching, while only occurring an additional
(1 − ε) loss in the approximation ratio. In non-bipartite graphs, our framework does not lead to
a universal transformation. Still, we show that combining the framework with our new structural
properties of certain subgraphs leads to several new algorithms that essentially match the best-
known unweighted algorithms. Our framework can be applied to many models, though we focused
on dynamic algorithms where the weighted/unweighted gap was largest.

There are several natural open problems that arise from our results.

• Reducing the dependence on ε. Because we rely on the bucketing scheme of Gupta and
Peng [GP13], our framework introduces a much larger dependence on ε than the corresponding
unweighted algorithms: the update time is multiplied by (1/ε)O(1/ε). Is it possible to reduce
this factor to poly(1/ε)?

• Non-bipartite graphs. Is there a universal reduction that converts any dynamic algo-
rithm for unweighted matching in non-bipartite graphs into one for weighted matching in
non-bipartite graphs? That is, can our Result 1 be extended to non-bipartite graphs? It is
not hard to check that our framework already does so if we allow an additional 2/3 loss in the
approximation ratio. Can this loss be made only 1− ε?
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• Other models. As discussed in Section 6, our framework can be applied to many models,
not just dynamic algorithms. A general open problem is thus what other models can benefit
from our framework.

We highlight one model in particular: computing a matching in one pass of semi-streaming
when edges arrive in a random order. There is extensive literature on this problem in
unweighted graphs [KMM12, Kon18, ABB+19, FHM+20, Ber20], but the state-of-the-art for
weighted graphs lags far behind [GKMS19]. We would like to apply our framework to close
this weighted/unweighted gap, but even in bipartite graphs, there is a subtle issue: our frame-
work runs existing unweighted algorithms in the unfolded graph φ(G), and even if edges arrive
in a random order in G, they do not arrive in a random order in φ(G). We suspect this issue
can be resolved because the correlation between edges in φ(G) seems relatively small.

We think it is also likely that the current state-of-the-art algorithm for unweighted graphs
by Bernstein [Ber20] can be extended to weighted graphs even in non-bipartite graphs. The
reason is that Bernstein’s algorithm maintains an EDCS, which we showed in this paper is
refolding-approximate. There are two issues to resolve: the first is the general issue above
about the randomness of edge arrivals in the unfolded graph, and the second is that Bernstein’s
algorithm only maintains a relaxed version of an EDCS; one would have to show this relaxed
version is still refolding-approximate.
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A Handling Superpolynomial Weights

As long as the weights of the input graph are polynomial in n, the additional log(R) term in our
update time is O(log(n)). But if R is very large, then we can additionally use the following reduction
of Stubbs and Williams [SW17].

Theorem A.1 ([SW17]). Let A be a dynamic algorithm that maintains an α-approximate max-
imum weight matching with update time T (n,m,α,W ) over a graph whose edge weights come
from [W ]. Then, for every constant ε > 0, we can convert A into an algorithm that maintains
an (1 + ε)α-approximate maximum weight matching with update time T (n,m,α, n2ε−2) log2(n) +
log(n) log log(R) + log log(W ). Further, the new algorithm has the same secondary guarantees as
the algorithm A.

Using this reduction with our framework gives, for example, a way to convert an algorithm
for unweighted bipartite graphs with update time Tu into one for weighted bipartite graphs with
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update time O(Tu log3(n) + log(n) log log(R) + log log(W )). Analagous statements can be made for
our other reduction.

B The Bounded-Degree Dynamic Matching Algorithm Ab
In this section we describe an algorithm that meets the description of Theorem 2.1. We need the
following linear-time (1− ε)-approximation algorithm of [DP14].

Lemma B.1 ([DP14]). For ε ∈ (0, 1), a (1−ε)-approximate maximum weight matching in a weighted
graph can be computed (statically) in O(m/ε) time.

We can now prove Theorem 2.1.

Proof. We give an algorithm that gives an amortized time of O(∆ ·W 2/ε2). The algorithm proceeds
in phases. At the beginning of each phase, the algorithm computes a (1 − ε/2)-maximum weight
matching M in O(m/ε) time using the algorithm of Lemma B.1. A phase continues for ε|M |/2W

updates. During each phase, the total weight of M reduces by at most ε · w(M)/2 and thus M
remains a (1 − ε)-approximate maximum weight matching. The amortized runtime is therefore
O(mW/(ε2|M |)).

We finish the proof by showing that m
|M | = O(∆W ). Let M∗ be the maximum weight matching

of G and consider |M∗|. Notice that every edge of G is adjacent to some edge in M∗, or else M∗

would not be maximum. Thus,

m ≤ 2∆|M∗|
≤ 2∆w(M∗)

≤ 2∆(1 + ε)w(M)

≤ 2∆(1 + ε)W |M |.

Substituting this upper bound on m/|M | gives an amortized bound of O(∆W 2/ε2). This can be
easily de-amortized by spreading out the work of computing the matching.

C The Reduction of Gupta and Peng

We now describe the bucketing scheme of Gupta and Peng [GP13]. Loosely speaking, this scheme
allows us to reduce the case of general weights to the case of a graph G with integer weights in [W ],
for a large constantW (W depends exponentially on the approximation parameter ε, but is constant
as long as ε is constant.) Although Gupta and Peng only described their scheme in the context of a
specific result for dynamic matching, it is in fact extremely versatile: it yields a black-box reduction
not only for dynamic matching (our Theorem 3.6), but also for streaming (our Theorem 6.1) and
communication complexity (our Theorem 6.2). For more details, see Section 4 of [GP13].

We start by describing the general structural guarantees of their bucketing scheme. We then
argue why these imply all the model-specific theorems that we use.

Let G = (V,E,w) be a weighted graph, let ε ∈ (0, 1/2), and let β = d1/εe.

Definition C.1. For i ∈ [b] and ` ≥ 0, let E(i)
` := {e ∈ E : (1/ε)i+(`−1)β+1 ≤ w(e) < (1/ε)i+`β}.

The set E(i) :=
⋃
`E

(i)
` forms the ith level set of G, and we call E(i)

` the `th level of the ith level
set.

Define G(i) := (V,E(i), w).
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Notice that there is at least a (1/ε)-factor gap between the largest edge weight in level ` and
the smallest edge weight in level ` + 1 for each level ` of G(i). This gap allows maximum weight
matchings from different levels to be combined without much loss in the approximation factor. In
particular, the analysis of Gupta and Peng provides a proof for Lemma C.2 below, which uses
Algorithm GreedyCombine below.

ALGORITHM 3: GreedyCombine
Input: A list of matchings M1,M2, . . . ,Mk.
Output: A matching M .
for i← 1 to k do

for e ∈Mi do
if M ∪ e is a matching then

M ←M ∪ e
end

end
end
return M

Lemma C.2 ([GP13]). Let G = (V,E,w) be a weighted graph, let ε > 0, let β = d1/εe, and let G(i)

be defined as above. The following hold:

1. There is some i ∈ [β] such that mwm(G(i)) ≥ (1− 3ε)mwm(G).

2. Let i ∈ [β] and let M (i)
` be an α-approximate maximum weight matching of E(i)

` for each level
`. Also, let L be the largest non-empty level of E(i). The matching

M := GreedyCombine(M
(i)
L ,M

(i)
L−1, . . . ,M

(i)
0 )

satisfies (1 + 3ε)α · w(M) ≥ mwm(G(i)).

Proof. We show with a simple averaging argument that some G(i) contains a good matching. Let
F (i) = E \ E(i) be the sets of edges missing from the ith level set and notice that {F (i)}i∈β is
a partition E. Thus, there is some j ∈ [β] such that w(M∗ ∩ F (j)) ≤ M∗/β ≤ εM∗. Thus,
w(M∗ ∩ E(j)) ≥ (1− ε)w(M∗) ≥ (1− 3ε)w(M∗).

Now we show that the greedy matching that combines α-approximate maximum weight match-
ings from each level produces an (1 − 3ε)α-approximate maximum weight matching. Let H =⋃
`M

(i)
` . Clearly w(H) ≥ α ·mwm(G(i)) since H gets at least an α fraction of the weight from each

level as the maximum weight matching of G(i). Now we show that (1 + 3ε)w(M) ≥ w(H). We
charge the weight of each edge e ∈ H to some adjacent edge in f ∈ M ; if e ∈ M , then we charge
the weight of e to itself. Let Φ(e) be the total amount charged to e. Since each edge e ∈M of level
` is charged to once by itself and at most twice from every other level less than `, we have

Φ(e) ≤ w(e) + 2
`−1∑
j=0

(1/ε)i+jβ

= w(e) + 2(1/ε)i · (1/ε)`β − 1

(1/ε)β − 1

< w(e) + 3(1/ε)i+(`−1)β

≤ w(e) + 3ε · w(e)
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= (1 + 3ε)w(e).

Hence, w(H) = Φ(M) ≤ (1 + 3ε)w(M), as desired.

Notice that since the ratio between weights in any level is (1/ε)β , we may assume by a standard
rescaling and rounding argument that the edges weights are integers in {1, 2, . . . ,

⌈
(1/ε)β+1

⌉
}. Thus,

the previous lemma says that, provided that we can compute approximate maximum matchings
whose edges are in [W ], and provided that we can combine the matchings efficiently à la Greedy-
Combine, we can compute a (1− 4ε)-approximate maximum weight matching. We now sketch the
proof of the reduction in each model we apply it to.

Theorem 3.6 ([GP13]). Let G be a weighted graph and let ε ∈ (0, 1/2). If there is an algo-
rithm A that maintains an α-approximate maximum weight matching in a graph whose weights are
in {1, 2, . . . ,W} with update time T (n,m,α,W ), then there is an algorithm A′ that maintains a
(1 − ε)α-approximate maximum weight matching in G in update time Oε(T (n,m,α, γε) · log(R)).
Moreover, A has the same secondary features as A′.

Observe that approximate maximum weight matchings can be maintained in each level using
algorithm A. The only challenge then is to maintain the greedily combined matchings for each level
set. See [GP13] for the details and proof.

Proof of Theorem 6.1. In the streaming setting, we run the matching algorithm over each level of
each G(i), incurring an additional γε factor in space. At the end of the stream, the matchings in each
level set can be trivially combined, since they are all stored in memory; the largest such matching
is returned.

Proof of Theorem 6.2. In the one-way communication setting, we run the one-way communication
protocol to allow Bob to compute a matching in each level of each G(i), incurring an additional γε
factor in communication. Bob can then greedily combine the matchings in each level set and report
the largest one.

D Efficiently Maintaining Integral Matchings and Kernels

A recent result due to Wajc [Waj20a] gives a new dynamic matching sparsification algorithm—an
algorithm for computing a sparse subgraph that preserves the matching size approximately and can
be maintained efficiently. He uses to scheme to design an algorithm that maintains a kernel of G.
We use this algorithm as a black box. Wajc’s description of this algorithm uses slightly different
organization/notation, so for convenience, we outline how it works in this section.

We first restate the formal result. This results stems from Lemma 4.6 of [Waj20b] and the
discussion of runtime in section 4.2.1 of that paper.

Theorem 5.3 ([Waj20a]). Let G be an unweighted graph and let ε ∈ (0, 1/2). For d = Θ(log n ·
poly(1/ε)), there is a randomized (Las Vegas) algorithm that maintains a (d, ε)-kernel of G in worst-
case update time O((log4 n+ d log n) ·poly(1/ε)) with high probability against an adaptive adversary.

We first describe Wajc’s algorithm and then summarize how it gives a proof of Theorem 5.3.

Wajc’s sparsification scheme. The algorithm S creates a sparsifier as follows: it takes as input
a fractional matching ~x = (x1, . . . , xm), then it creates O(log n/ε2) graphs G(i), where G(i) only
consists of edges ej such that xj ∈ ((1 + ε)−i, (1 + ε)−i+1] (not to be confused with the graphs in
Appendix C). The algorithm then proceeds to compute a proper edge coloring χi of each graph
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G(i). Finally, it samples a set of colors Si from χi, and then includes all the edges from G(i) which
are colored from a color in Si in the sparsifier H.

Proof sketch of Theorem 5.3. A key observation of [Waj20a] is that, if their sparsification algo-
rithm is given as input a specific type of fractional matching, called a (δ, d)-approximately maximal
fractional matching ~x for a sufficiently large d, and if the edges in the support of ~x are sampled
with the right probabilities depending on a parameter ε, and d, then the output H is in fact a
(d(1 +O(ε)), O(δ) +O(ε))-kernel with high probability. We define the notion of an approximation
maximal fractional matching, first introduced by [ACC+18], and then state our theorem formally.

Definition D.1. A fractional matching ~x is a (δ, d)-approximately maximal if every edge e ∈ E has
fractional value xe > 1

d , or it has one end point v with
∑

e′3v xe′ ≥ 1− δ, with all edges e′ incident
on this v having value xe′ ≤ 1

d .

Theorem D.2. Let δ ≥ 0, ε > 0, and d ≥ (1+ε)2 logn
(1−δ)ε2 . If ~x is a (δ, d)-approximately maximal

fractional matching, then the subgraph H output by the sparsification algorithm of [Waj20a] when
run on ~x with ε and d is a (d(1 + O(ε)), O(δ) + O(ε)) kernel with high probability. Further, since
|E(H)| = Õ(µ(G)) and the kernel can be sampled in Õ(µ(G)) time, it can be maintained against an
adaptive adversary in Õ(1) time with high probability.

We state briefly why the above theorem is correct. Note that the sparsification algorithm
of [Waj20a] samples a fixed number of edges from the graph. Essentially, for every e ∈ G,

min{1, xe · d}
(1 + ε)2

≤ Pr (e ∈ H) ≤ min{1, xe · d} · (1 + ε)

Further, for e 6= e′, the random variables 1{e∈H} and 1{e′∈H} are negatively associated (intuitively,
this is because the sparsification algorithm is sampling a fixed number of edges from G.) The above
bound on probabilities, immediately tells us that for any vertex v, E [degH(v)] ≤ (1 + ε)d. Since
degH(v) is a sum of negatively associated 0− 1 random variables, we may apply Chernoff bound to
get that degH(v) ≤ d(1+O(ε)) with high probability. Now, we are left with proving that H satisfies
the second property of kernels with high probability as well. Consider any edge e /∈ H, we know that
Pr (e ∈ H) < 1. For such an edge e, we can deduce that xe < 1

d . Since ~x is a (δ, d)-approximately
maximal fractional matching, we know that there is an endpoint v of e such that

∑
e′3v xe′ ≥ 1− δ.

So, E [degH(v)] ≥ d(1−δ)
(1+ε)2

. Applying Chernoff, we get that degH(v) ≥ d(1−δ)
(1+O(ε)) ≥ d(1− δ)(1−O(ε))

with high probability.
To understand why the kernel can be sampled in Õ(µ(G)) time, note that the sparsification

algorithm of [Waj20a] edge-colors the graph on the support of ~x. It achieves this via a deterministic
algorithm with a worst case update time of O(log n) (see [BCHN18]). Then, it samples Õε(1) color
classes. Each of these color classes form a matching, so H can be sampled in Õε(µ(G)) time. The
update time and the adaptive adversary guarantee follow from the stability property of matching.
At a high level, we can wait for ε · µ(G) updates before recomputing the kernel. This is because,
after εµ(G) updates, the matching in the support of kernel is still a (1 − O(ε))-matching (even
against an adaptive adversary). So, this already gives us an amortized update time of Õε(1). This
can be de-amortized by spreading the work of computing the the kernel through ε · µ(G) updates.

The (1/2 − ε)-fractional matching maintained by the deterministic algorithm of [BHN17] in
poly(log n, 1

ε ) worst case update time was proved by [ACC+18] to be a (O(ε), d)-approximately
maximal matching for some d large enough to satisfy the conditions of Theorem D.2.
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To summarize, after each update, the algorithm after each update, computes a fractional match-
ing ~x using the algorithm of [BHN17]. To then find the kernel, it computes a coloring of the support
of ~x using the algorithm of [BCHN18]. Then it performs the sampling process described above, and
the graph sampled is a kernel with high probability. Since the procedures of [BHN17,BCHN18] and
the sampling procedure of [Waj20a] take time poly(log n, 1/ε), the overall runtime of the algorithm
is poly(log n, 1/ε). With this we conclude the proof.
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